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Abstract Template attacks and machine learning are two
popular approaches to profiled side-channel analysis. In this
paper, we aim to contribute to the understanding of their
respective strengths and weaknesses, with a particular focus
on their curse of dimensionality. For this purpose, we take
advantage of a well-controlled simulated experimental set-
ting in order to put forward two important aspects. First and
from a theoretic point of view, the data complexity of tem-
plate attacks is not sensitive to the dimension increase in
side-channel traces given that their profiling is perfect. Sec-
ond and from a practical point of view, concrete attacks are
always affected by (estimation and assumption) errors dur-
ingprofiling.As these errors increase,machine learninggains
interest compared to template attacks, especially when based
on random forests. We then clarify these results thanks to the
bias–variance decomposition of the error rate recently intro-
duced in the context side-channel analysis.

Keywords Side-channel attacks · Template attacks ·
Machine learning · Curse of dimensionality · Bias–variance
decomposition

1 Introduction

In a side-channel attack, an adversary targets a cryptographic
device that emits a measurable leakage depending on the
manipulated data and/or the executed operations. Typical
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examples of physical leakages include the power consump-
tion [21], the processing time [20] and the electromagnetic
emanation [13].

Evaluating the degree of resilience of a cryptographic
implementation is an important concern, e.g., for modern
smart cards. In this respect, profiled attacks are handy tools
since they can be used to approach their worst-case secu-
rity level [36]. These attacks rely on the optimal strategy
of recovering the key via a maximum likelihood strategy.
In practice, they essentially work in two steps: first a leak-
age model is estimated during a profiling phase, then the
leakagemodel is exploited to extract key-dependent informa-
tion in an online phase. Several approaches to profiling have
been introduced in the literature. Template attacks (TA), e.g.,
based on a Gaussian assumption [5], are a typical example.
The stochastic approach exploiting linear regression (LR)
is a frequently considered alternative [34]. More recently,
solutions relying on machine learning (ML) have also been
investigated [1,3,15–19,22–24,26,27,30,31]. These previ-
ous works support the claim that machine learning-based
attacks are effective and lead to successful key recover-
ies. This is natural since they essentially exploit the same
discriminating criteria as template attacks and linear regres-
sion (i.e., a difference in the mean traces corresponding to
different intermediate computations if an unprotected imple-
mentation is targeted—a difference in higher-order statistical
moments if the device is protected with masking). By con-
trast, it remains unclear whethermachine learning can lead to
more efficient attacks, either in terms of profiling or in terms
of online key recovery. Previous publications conclude in
one or the other direction, depending on the implementation
scenario considered, which is inherent to such experimen-
tal studies [1,17,19,24,26].

In this paper, we aim to complement these previous works
with a more systematic investigation of the conditions under
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which machine learning-based attacks may outperform tem-
plate attack (or not).1 For this purpose, we start with the
general intuition that machine learning-based approaches are
generally useful in order to deal with high-dimensional data
spaces. Following, our contributions are twofold. First, we
tackle the (theoretic) question whether the addition of use-
less (i.e., non-informative) leakage samples in leakage traces
has an impact on their informativeness if a perfect profiling
phase is achieved. We show that the (mutual) information
leakage estimated with a template attack exploiting such
a perfect model is independent of the number of useless
dimensions if the useless leakage samples are independent
of the useful ones. This implies that machine learning-based
attacks cannot be more efficient than template attacks in the
online phase if the profiling is sufficient. Second, we study
the practical counterpart of this question and analyze the
impact of imperfect profiling on our conclusions. For this
purpose, we rely on a simulated experimental setting, where
the number of (informative and useless) dimensions is used
as a parameter. Using this setting, we evaluate the curse of
dimensionality for concrete template attack and compare it
with machine learning-based attacks exploiting support vec-
tor machines (SVM) and random forests (RF). That is, we
considered support vector machine as a popular tool in the
field of side-channel analysis, and random forest as an inter-
esting alternative (since its random feature selection makes
its behavior quite different than template attack and support
vector machine).

Our experiments essentially conclude that template attack
outperform machine learning-based attacks whenever the
number of dimensions can be kept reasonably low, e.g.,
thanks to a selection of points of interests (POI), and that
machine learning (and random forest in particular) become(s)
interesting in “extreme” profiling conditions (i.e., with large
traces and a small profiling set)—which possibly arises when
little information about the target device is available to the
adversary. We then complement these results with an addi-
tional analysis based on the bias–variance decomposition of
the error rate, which was recently introduced in the side-
channel literature [25]. The bias–variance decomposition
allows separating the error rate of an attack in three weighted
terms, among them the bias and the variance terms. The val-
ues of the variance and the bias relate to the attack complex-
ity: A strategy with a high variance means a high sensitivity
to the profiling set while an attack with a high bias indicates a
high systematic error. This last analysis brings an interesting
complement to our results of COSADE 2015 [27], since it
adds a sound statistical explanation to our findings. Namely,
we can now show that template attacks have a high variance

1 Note that the gain of linear regression-based attacks over template
attack is known and has been analyzed, e.g., in [14,35]. Namely, it
essentially depends on the size of the basis used in linear regression.

while a random forest represents an interesting approach to
reduce this term in high-dimensional data spaces. The bias–
variance decomposition also sheds new light on the results
obtained in previous(ly listed) papers comparing machine
learning algorithms with conventional profiled attacks.

As a side remark, we also observe that most current
machine learning-based attacks rate key candidates accord-
ing to (heuristic) scores rather than probabilities. This pre-
vents the computation of probability-based metrics (such as
the mutual/perceived information [32]). It may also have an
impact on the efficiency of key enumeration [37], which is
an interesting scope for further investigation.

The rest of the paper is organized as follows. Section 2
contains notations, the attacks considered, our experimental
setting and evaluation metrics. Section 3 presents our theo-
retic result on the impact of non-informative leakage samples
in perfect profiling conditions. Section 4 discusses practical
(simulated) experiments in imperfect profiling conditions.
Section 5 analyses our results based on the bias–variance
decomposition. Eventually, Sect. 6 concludes the paper and
discusses perspectives of future work.

2 Background

2.1 Notations

We use capital letters for random variables and small caps for
their realizations. We use sans serif font for functions (e.g.,
f) and calligraphic fonts for sets (e.g., A). We denote the
conditional probability of a random variable A given B with
Pr [A|B] and use the acronym SNR for the signal-to-noise
ratio.

2.2 Template attacks

Let lx,k be a leakage trace measured on a cryptographic
device that manipulates a target intermediate value v =
f(x, k) associatedwith a known plaintext (byte) x and a secret
key (byte) k. In a template attack, the adversary first uses a
set of profiling traces LPS in order to estimate a leakage
model, next denoted P̂rmodel[lx,k | θ̂x,k], where θ̂x,k repre-
sents the (estimated) parameters of the leakage probability
density function (PDF). The set of profiling traces is typi-
cally obtained by measuring a device that is similar to the
target, yet under control of the adversary. Next, during the
online phase, the adversary uses a set of new attack traces
LAS (obtained by measuring the target device) and selects
the secret key (byte) k̃ maximizing the product of posterior
probabilities:

k̃ = argmax
k∗

∏

lx,k∈LAS

P̂rmodel

[
lx,k | θ̂x,k∗

]
· Pr[k∗]

P̂rmodel[lx,k]
· (1)
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Concretely, the seminal template attack paper suggested
to use Gaussian estimations for the leakage PDF [5]. We
will follow a similar approach and consider a Gaussian
(simulated) experimental setting. It implies that the param-
eters θ̂x,k correspond to mean vectors μ̂x,k and covariance
matrices Σ̂x,k . However, we note that any other probabil-
ity density function estimation could be considered by the
adversary/evaluator [12]. We will further consider two types
of template attacks: in the naive template attack (NTA), we
will indeed estimate one covariance matrix per intermediate
value; in the efficient template attack (ETA), we will pool the
covariance estimates (assumed to be equal) across all inter-
mediate values, as previously suggested in [7].

In the following, we will keep the lx,k and v notations for
leakage traces and intermediate values, and sometimes omit
the subscripts for simplicity.

2.3 Support vector machines

In their basic (two-classes) context, support vector machine
essentially aims at estimating Boolean functions [8]. For this
purpose, it first performs a supervised learning with labels
(e.g., v = −1 or v = 1), annotating each sample of the
profiling set. The binary support vector machine estimates a
hyperplane y = ŵ�l + b̂ that separates the two classes with
the largest possible margin, in the geometrical space of the
vectors. Then in the attack phase, any new trace l will be
assigned a label ṽ as follows:

ṽ =
{
1 if (ŵ�l + b̂) ≥ 1,

−1 otherwise.
(2)

Mathematically, support vector machine finds the param-
eters ŵ ∈ R

ns (where ns is the number of time samples per
trace) and b̂ ∈ R by solving the convex optimization prob-
lem:

min
w,b

1

2
(w�w),

subject to v(w�φ(lv) + b) ≥ 1,
(3)

where φ denotes a projection function that maps the data
into a higher (sometimes infinite) dimensional space usually
denoted as the feature space. Our experiments considered a
radial basis kernel function φ (RBF), which is a commonly
encountered solution, both in the machine learning field and
the side-channel communities. The radial basis kernel func-
tionmaps the traces into an infinite dimensionalHilbert space
in order to find a hyperplane that efficiently discriminate the
traces. It is defined by a parameter γ that essentially relates
to the “variance” of the model. Roughly, the variance of a
model is a measure on the variance of its output in function
of the variance of the profiling set. The higher the value of γ ,

the lower the variance of the model is. Intuitively, the vari-
ance of a model therefore relates to its complexity (e.g., the
higher the number of points per trace, the higher the vari-
ance of the model). We always selected the value of γ as the
inverse of the number of points per trace, which is a natu-
ral choice to compensate the increase in the model variance
due to the increase in the number of points per trace. Future
works could focus on other strategies to select this parameter,
although we do not expect them to have a strong impact on
our conclusions.

When the problem of Eq. 3 is feasible with respect to the
constraints, the data are said to be linearly separable in the
feature space. As the problem is convex, there is a guarantee
to find a unique global minimum. Support vector machine
can be generalized to multi-class problems (which will be
useful in our context with typically 256 target intermediate
values) and produce scores for intermediate values based on
the distance to the hyperplane. In our experiments, we con-
sidered the “one-against-one” approach. In a one-against-one
strategy, the adversary builds one support vector machine for
each possible pair of target values. During the attack phase,
the adversary selects the target value with a majority vote
among the set of support vector machines. We refer to [9] for
a complete explanation.

2.4 Random forests

Decision trees are classification models that use a set of
binary rules to calculate a target value. They are structured
as diagrams (tree) made of nodes and directed edges, where
nodes can be of three types: root (i.e., the top node in the
tree), internal (represented by a circle in Fig. 1) and leaf
(represented by a square in Fig. 1). In our side-channel con-
text, we typically consider decision trees in which (1) the
value associated with a leaf is a class label corresponding to
the target to be recovered, (2) each edge is associated with a
test on the value of a time sample in the leakage traces, and
(3) each internal node has one incoming edge from a node
called the parent node, as also represented in Fig. 1.

In the profiling phase, learning data are used to build the
model. For this purpose, the learning set is first associated
with the root. Then, this set is split based on a time sample that
most effectively discriminates the sets of traces associated
with different target intermediate values. Each subset newly
created is associated with a child node. The tree generator
repeats this process on each derived subset in a recursive
manner, until the child node contains traces associated with
the same target value or the gain to split the subset is less than
some threshold. That is, it essentially determines at which
time sample to split, the value of the split, and the decision to
stop or to split again. It then assigns terminal nodes to a class
(i.e., intermediate value). Next, in the attack phase, themodel
simply predicts the target intermediate value by applying the
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Fig. 1 Decision tree with two classes [l(t1) is the leakage at time t1]

classification rules to the new traces to classify. We refer to
[33] for more details on decision trees.

The random forests (RF) introduced by Breiman can be
seen as a collection of classifiers usingmany (unbiased) deci-
sion trees as models [4]. It relies on model averaging (aka
bagging) that leads to have a low variance of the resulting
model. After the profiling phase, random forest returns the
most consensual prediction for a target value through amajor-
ity vote among the set of trees. Random forests are based on
three main principles. First, each tree is constructed with a
different learning set by re-sampling (with replacement) the
original dataset. Secondly, the nodes of the trees are split
using the best time sample among a subset of randomly cho-
sen ones (by contrast to conventional trees where all the time
samples are used). The size of this subsetwas set to the square
of the number of time samples (i.e.,

√
ns) as suggested by

Breiman. These features allow obtaining decorrelated trees,
which improves the accuracy of the resulting random for-
est model. Finally, and unlike conventional decision trees as
well, the trees of a random forest are fully grown and are not
pruned, which possibly leads to overfitting (i.e., each tree has
a low bias but a high variance) that is reduced by averaging
the trees. The main (meta-) parameters of a random forest
are the number of trees. Intuitively, increasing the number
of trees reduces the instability (aka variance) of the models.
We set this number to 500 by default, which was sufficient in
our experiments in order to show the strength of this model
compared to template attack. We leave the detailed investi-
gation of these parameters as an interesting scope for further
research.

2.5 Experimental setting

Let l p,k (t) be the t-th time sample of the leakage trace l p,k .
We consider contexts where each trace l p,k represents a vec-
tor of ns samples, that is:

l p,k = {
l p,k (t) ∈ R | t ∈ [1; ns]

}
. (4)

Each sample represents the output of a leakage function.
The adversary has access to a profiling set of Np traces per
target intermediate value, in which each trace has d informa-
tive samples and u uninformative samples (with d+u = ns).
The informative samples are defined as the sum of a deter-
ministic part representing the useful signal (denoted as δ) and
a random Gaussian part representing the noise (denoted as
ε), that is:

l p,k (t) = δt (p, k) + εt , (5)

where the noise is independent and identically distributed
for all t’s. In our experiments, the deterministic part δ corre-
sponds to the output of the AES S-box, iterated for each time
sample and sent through a function G, that is:

δt (p, k) = G
(
SBoxt (p ⊕ k)

)
, (6)

where:

SBox1 (p ⊕ k) = SBox (p ⊕ k) ,

SBoxt (p ⊕ k) = SBox
(
SBoxt−1 (p ⊕ k)

)
.

Concretely, we considered a function G that is a weighted
sum of the S-box output bits. However, all our results can
be generalized to other functions (preliminary experiments
did not exhibit any deviation with highly nonlinear leakage
functions—which is expected in a first-order setting where
the leakage informativeness essentially depends on the SNR
[29]). We set our signal variance to 1 and used Gaussian dis-
tributed noise variables εt with mean 0 and variance σ 2 (i.e.,
the SNR was set to 1

σ 2 ). Eventually, uninformative samples
were simply generated with a noisy part. This simulated set-
ting is represented in Fig. 2, and its main parameters can be
summarized as follows:

– number of informative points per trace (denoted as d),
– number of uninformative points per trace (denoted as u),
– number of profiling traces per intermediate value (denoted
as Np),

– number of traces in the attack step (noted Na),
– noise variance (denoted as σ 2) and SNR.

The rationale of this simulator is that, in practice, the
quantity of information in each sample varies, leading to
uninformative samples and informative samples containing
different quantities of information (from very low to very
high) on the target value. This results to an open problem in
practice: which sample should be removed. In this context,
the main purpose of our simulator is to exhibit the impact of
an increase in the number of dimensions for profiled attacks.
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2.6 Evaluation metrics

The efficiency of side-channel attacks can be quantified
according to various metrics. We will use information theo-
retic and security metrics advocated in [36].

2.6.1 Success rate (SR) and error rate (ER)

For an attack targeting a part of the key (e.g., a key byte) and
allowing to sort the different candidates, we define the suc-
cess rate of order o as the probability that the correct subkey
is ranked among the first o candidates. The error rate rep-
resents the probability that the correct subkey is not ranked
among the first o candidates. The success rate and the error
rate are generally computed in function of the number of
attack traces Na (given a model that has been profiled using
Np traces). In the rest of this paper, we focus on the success
rate of order 1 (i.e., the correct key rated first).

2.6.2 Perceived/mutual information (PI/MI)

Let X, K , L be random variables representing a target key
byte, a known plaintext and a leakage trace. The perceived
information P̂I(K ; X, L) between the key and the leakage is
defined as [32]:2

H(K )

+
∑

k∈K
Pr[k]

∑

x∈X
Pr[x]

∑

l∈L
Prchip[l|x, k] · log2 P̂rmodel[k|x, l].

The perceived information measures the adversary’s
ability to interpret measurements coming from the true
(unknown) chip distribution Prchip[l|x, k] with an esti-
mated model P̂rmodel[l|x, k] while Prchip[l|x, k] is generally
obtained by sampling the chip distribution (i.e., makingmea-
surement). Of particular interest for the next section will

2 In [32] the equation representing the perceived information has a
minus sign, whereas the correct sign is positive.

Fig. 2 Simulated leaking implementations

be the context of perfect profiling, where we assume that
the adversary’s model and the chip distribution are identi-
cal (which, strictly speaking, can only happen in simulated
experimental settings since any profiling based on real traces
will at least be imperfect because of small estimation errors
[12]). In this context, the estimated perceived information
will exactly correspond to the (worst-case) estimated mutual
information.

Information theoretic metrics such as the mutual informa-
tion and the perceived information are especially interesting
for the comparison of profiled side-channel attacks as we
envision here. This is because they can generally be estimated
based on a single plaintext (i.e., with Na = 1), whereas the
success rate is generally estimated for varying Na’s. In other
words, their scalar value provides a very similar intuition
as the success rate curves [35]. Unfortunately, the estima-
tion of information theoretic metrics requires distinguishers
providing probabilities, which is not the case of machine
learning-based attacks.3 As a result, our concrete experi-
ments comparing template attack, support vector machine
and random forest will be based on estimations of the suc-
cess rate for a number of representative parameters.

3 Perfect profiling

In this section, we study the impact of useless samples in
leakage traces on the performances of template attack with
perfect profiling (i.e., the evaluator perfectly knows the leak-
ages’ probability density function). In this context, we will
use Pr for both Prmodel and Prchip (since they are equal) and
omit subscripts for the leakages l to lighten notations.

In Proposition 1, we aim to show that in case of perfect
profiling, the detection of points of interests is not necessary
for a template attack, since useless points will not have any
impact on the attack’s success. Since template attacks are
optimal from an information theoretic point of view, it also
means that themachine learning-based approaches cannot be
more efficient in this context.

Proposition 1 Let us assume two template attacks with
perfect models using two different attack traces l1 and l2
associated with the same plaintext x: l1 is composed of
d samples providing information and l2 = [l1||ε] (where
ε = [ε1, . . . , εu] represents noise variables independent

3 There are variants of SVMandRF that aim to remedy to this issue.Yet,
the “probability-like” scores they output are not directly exploitable in
the estimation of information theoretic metrics. For example, we could
exhibit exampleswhere probability-like scores of one do not correspond
to a success rate of one. More recently, Choudary et al. [6] showed that
key enumeration based on scores and based on probabilities provide
different results, which highlights the difference between score-based
and probability-based profiled attacks.
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of l1 and the key). Then, the mutual information leakage
MI(K ; X, L) estimated with their (perfect) leakage models
is the same.

Proof As clear from the definitions in Sect. 2.6, the mutual/
perceived information estimated thanks to template attack
only depend on Pr[k|l]. So we need to show that these con-
ditional probabilities Pr[k|l2] and Pr[k|l1] are equal. Let k
and k′ represent two key guesses. Since ε is independent of
l1 and k, we have:

Pr[l2|k′]
Pr[l2|k] = Pr[l1|k′] · Pr[ε|k′]

Pr[l1|k] · Pr[ε|k]
= Pr[l1|k′] · Pr[ε]

Pr[l1|k] · Pr[ε]
= Pr[l1|k′]

Pr[l1|k] . (7)

This directly leads to:

∑
k′∈K Pr[l2|k′]
Pr[l2|k] =

∑
k′∈K Pr[l1|k′]
Pr[l1|k] ,

Pr[l2|k]∑
k′∈K Pr[l2|k′] = Pr[l1|k]∑

k′∈K Pr[l1|k′] ,
Pr[k|l2] = Pr[k|l1], (8)

which concludes the proof. 	


Quite naturally, this proof does not hold as soon as there
are dependencies between the d first samples in l1 and the u
latter ones. This would typically happen in contexts where
the noise at different time samples is correlated (which could
then be exploited to improve the attack).

Note that themain reasonwhywe need a perfectmodel for
the result to hold is that we need the independence between
the informative and non-informative samples to be reflected
in these models as well. For example, in the case of Gaussian
templates, we need the covariance terms that corresponds
to the correlation between informative and non-informative
samples to be null (which will not happen for imperfectly
estimated templates). In fact, the result would also hold for
imperfect models, as long as these imperfections do not sug-
gest significant correlation between these informative and
non-informative samples. But of course, we could not state
that template attacks necessarily performbetter thanmachine
learning-based attacks in this case. Overall, this conclusion
naturally suggests a more pragmatic question. Namely, per-
fect profiling never occurs in practice. So how does this
theoretic intuition regarding the curse of dimensionality for
template attack extends to concrete profiled attack (with
bounded profiling phases)? We study it in the next section.

4 Experiments with imperfect profiling

We now consider examples of template attack, support vec-
tor machine and random forest-based attacks in order to
gain intuition about their behavior in concrete profiling con-
ditions. As detailed in Sect. 2, we will use a simulated
experimental setting with various number of informative and
uninformative samples in the leakage traces for this purpose.

4.1 Nearly perfect profiling

As a first experiment, we considered the case where the pro-
filing is “sufficient”—which should essentially confirm the
result of Proposition 1. For this purpose, we analyzed simu-
lated leakage traces with 2 informative points (i.e., d = 2),
u = 0 and u = 15 useless samples, and an SNR of 1, in
function of the number of traces per intermediate value in the
profiling set Np. As illustrated in Fig. 3, we indeed observe
that (e.g.) the perceived information is independent of u if
the number of traces in the profiling set is “sufficient” (i.e.,
all attacks converge toward the same perceived information
in this case). By contrast, we notice that this “sufficient”
number depends on u (i.e., the more useless samples, the
larger Np needs to be). Besides, we also observe that the
impact of increasing u is stronger for naive template attack
than efficient template attack, since the first one has to deal
with a more complex estimation. Indeed, the efficient tem-
plate attack has 256 timesmore traces than the naive template
attack to estimate the covariance matrice. So overall, and as
expected, as long as the profiling set is large enough and
the assumptions used to build the model capture the leakage
samples sufficiently accurately, template attacks are indeed
optimal, independent of the number of samples they actu-
ally profile. So there is little gain to expect from machine
learning-based approaches in this context.
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Fig. 3 Perceived information for naive template attack (NTA) and effi-
cient template attack (ETA) in function of Np with SNR = 1
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4.2 Imperfect profiling

We now move to the more concrete case where profiling is
imperfect. In our simulated setting, imperfections naturally
arise from limited profiling (i.e., estimation errors): We will
investigate their impact next and put forward some useful
intuitions regarding the curse of dimensionality in (profiled)
side-channel attacks. Yet, we note that in general, assump-
tion errors can also lead to imperfect models, that are more
difficult to deal with (see, e.g., [12]). For example, in a first-
order masking implementation, when the adversary does not
know the mask values during the profiling step, the leakages
associated with a key value follow amultimodal distribution.
This context leads to assumption errors whether the adver-
sary exploits Gaussian template attacks. Note however that,
in our context, template attacks have no assumption error.

Besides, and as already mentioned, since we now want to
compare template attack, support vectormachine and random
forest, we need to evaluate and compare them with security
metrics (since the two latter ones do not output the probabil-
ities required to estimate information theoretic metrics).

In our first experiment, we set again the number of useful
dimensions to d = 2 and evaluated the success rate of the dif-
ferent attacks in function of the number of non-informative
samples in the leakages traces (i.e., u), for different sizes of
the profiling set. As illustrated in Fig. 4, we indeed observe
that for a sufficient profiling, efficient template attack is
the most efficient solution. Yet, it is also worth observing
that naive template attack provides the worst results overall,
which already suggests that comparisons are quite sensitive
to the adversary/evaluator’s assumptions. Quite surprisingly,
our experimental results show that up to a certain level, the
success rate of random forest increases with the number of
points without information. The reason is intrinsic to the
random forest algorithm in which the trees need to be as
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Fig. 4 Success rate for naive template attack (NTA), efficient template
attack (ETA), support vector machine (SVM) and random forest (RF)
in function of the number of useless samples u, for various sizes of the
profiling set Np , with d = 2,SNR = 1, Na = 15

decorrelated as possible. As a result, increasing the number
of points in the leakage traces leads to a better indepen-
dence between trees and improves the success rate. Besides,
the most interesting observation relates to random forest in
high dimensionality, which remarkably resists the addition
of useless samples (compared to support vector machine and
template attack). Themain reason for this behavior is the ran-
dom feature selection embedded into this tool. That is, for a
sufficient number of trees, random forest eventually detects
the informative points of interests in the traces, which makes
it less sensitive to the increase in u. By contrast, template
attack and support vector machine face a more and more
difficult estimation problem in this case.

Another noticeable element of Fig. 4 is that support vector
machine and random forest seem to be bounded to lower suc-
cess rates than template attack. But this is mainly an artifact
of using the success rate as evaluation metric. As illustrated
in Fig. 5, increasing either the number of informative dimen-
sions in the traces d or the number of attack traces Na leads
to improved success rates for the machine learning-based
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Fig. 5 a Success rate for naive template attack (NTA), efficient tem-
plate attack (ETA), support vector machine (SVM) and random forest
(RF) in function of the number of useless samples u, with parameters
Np = 25, d = 5,SNR = 1 and Na = 15. b Similar experiment with
parameters Np = 50, d = 2,SNR = 1 and Na = 30
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Fig. 6 Time complexity for efficient template attack (ETA), support
vector machine (SVM) and random forest (RF) in function of the num-
ber of useless samples, for d ∈ {2, 12} and Np = 25. a Profiling time
relatively to TA as a function of the number of non-informative points.
b Attacking time relatively to TA as a function of the number of non-
informative points

approaches as well. For the rest, the latter figure does not
bring significantly new elements. We essentially notice that
random forest becomes interesting over efficient template
attack for very large number of useless dimensions and that
efficient template attack is most efficient otherwise.

Eventually, the interest of the random feature selection in
random forest-based models raises the question of the time
complexity for these different attacks. That is, such a ran-
dom feature selection essentially works because there is a
large enough number of trees in our random forest models.
But increasing this number naturally increases the time com-
plexity of the attacks. For this purpose,we report some results
regarding the time complexity of our attacks in Fig. 6. As a
preliminary note, we mention that those results are based
on prototype implementations in different programming lan-
guages (C for template attack, R for support vector machine
and random forest). So they should only be taken as a rough
indication. Essentially, we observe an overhead for the time
complexity of machine learning-based attacks, which van-

ishes as the size of the leakage traces increases. Yet, andmost
importantly, this overhead remains comparable for support
vectormachine and randomforest in our experiments (mainly
due to the fact that the number of trees was set to a constant
500). So although the computational cost of these attacks
is not negligible, it remains tractable for the experimental
parameters we considered (and could certainly be optimized
in future works).

5 Bias–variance decomposition analysis

The goal of this section is to understand more deeply (i) why
template attack can have a higher success rate than machine
learning-based attack in a low dimensionality context, and
(i) why a random forest outperforms template attack in a
high dimensionality context. Our analyzes are based on the
bias–variance decomposition of the error rate first proposed
by Domingos in the field of machine learning [10,11] and
then introduced in the side-channel literature by Lerman et
al. [25].

5.1 Background

Domingos showed that the error rate of a model can be
decomposed in threeweighted components [10,11]: the error
rate of the Bayes classifier ERb(·) (defined in this section and
also known as the noise term in the machine learning field),
the bias B(·) and the variance V(·), generally leading to the
equality:

Error rate = ELAS [c1 × ERb(LAS)]

+ ELAS [B(LAS)] Bias

+ ELAS [c2 × V(LAS)] , Variance (9)

where {c1, c2,ERb(LAS),B(LAS),V(LAS)} ∈ R
5, and LAS

represents a set of attack traces.
In order to implement the bias–variance decomposition,

we first need a Bayes classifier [denoted Ab(·)] which repre-
sents the best model that an adversary can build (i.e., a model
with no estimation nor assumption errors). More formally,
the Bayes classifier minimizes the probability of misclassi-
fication:

Ab(LAS) = argmax
k∗

Pr
[LAS | k∗] × Pr

[
k∗] . (10)

Next, the loss function L(k, k′) represents the cost of pre-
dicting k′ when the true target value is k. In this paper, we
consider the zero-one loss function: The cost is zero when k
equals k′ and one in the other cases.

Intuitively, the error rate of the Bayes classifier represents
the unavoidable component of the error rate, i.e., the mini-
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mum error rate of a model. More formally, the error rate of
the Bayes classifier equals to:

ERb(LAS) = L(k,Ab(LAS)). (11)

Let now Am(LAS) be the main prediction that represents
the most frequent prediction on the set of attack traces LAS

given by the estimated model when varying the profiling set.
The bias term represents the difference (according to the loss
function) between themain prediction and the prediction pro-
vided by the Bayes classifier. Mathematically the bias term
equals:

B(LAS) = L(Am(LAS),Ab(LAS)). (12)

The variance term then measures the variation of a pre-
diction on a set of attack traces as a function of different
profiling sets. Mathematically, the variance term equals:

V(LAS) = ELPS [L(Am(LAS),A(LAS,LPS))] , (13)

where LPS is a set of profiling traces and A(LAS,LPS) is the
prediction of the estimated model based on the profiling set
LPS and the attacking set LAS.

Based on these notations, Domingos demonstrated that
the multiplicative factors c1 and c2 equal:

c1 = Pr [A = Ab]

−Pr [A �= Ab] × Pr [A = k | Ab �= k] , (14)

c2 =
{−Pr [A = Ab | A �= Am] Am �= Ab

1 Am = Ab
, (15)

where A = A(LAS), Ab = Ab(LAS) and Am = Am(LAS).

5.2 Template attack

Recently, Lerman et al. [25] showed that template attacks
have a high variance while stochastic attack correspond
to a trade-off between the bias and the variance terms. In
this section, we aim to evaluate when and why template
attacks generally worked well in our previous experiments,
and machine learning algorithm (and more precisely random
forests) can outperform them in extreme profiling condi-
tions.4

Our first experiment aims to recall the effect of the leak-
age function on the error rate of template attack. We use
10 × 256 traces in the profiling set, 10 informative points

4 By contrast, we do not discuss the impact on the bias and on the
variance term of each meta-parameter of a random forest and a tem-
plate attack. For the interested readers about this aspect, we refer to the
document of Louppe [28] analyzing random forests and to the paper of
Lerman et al. [25] analyzing template attack.
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Fig. 7 Error rate, bias and variance of a template attack as a
function of the number of irrelevant points per trace where u ∈
{0, 60, 120, 180, 240, 300}. There are 10 × 256 traces in the profiling
set, 10 informative points per trace, 1 attacking trace, an SNR of 1, and
the leakage function is linear (a) and random (b)

per trace, 1 attacking trace and an SNR of 1. We consider
two leakage functions (one linear and one random) repre-
senting two bijective functions providing the same amount
of information per leakage but different dependency between
the leakages and the target values. The purpose is to show
the error rate, the bias and the variance of template attacks.
Figure 7 clarifies that the success rate of template attack is
independent of the leakage function (as already put forward
by Lerman et al. [25]). More precisely, template attack has a
high variance and a low bias, confirming the high(er) com-
plexity of the model leading template attacks to be able to
represent any kind of dependency between the target value
and the leakage function.

In order to reduce the variance of template attacks,weneed
to increase the size of the profiling set or to use a stochastic
attack with a low degree. The first strategy keeps the bias low
while the secondmay increase the bias. This phenomenon led
us to consider thefirst approach as an additional illustration of
our previous conclusions. Figure 8 showswhat happenswhen
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Fig. 8 Error rate, bias and variance of a template attack as a function of
the number of irrelevant points per trace where u ∈ {0, 120, 240, 500}.
There are 30× 256 traces in the profiling set, 20 informative points per
trace, a random leakage, 1 attacking trace, and an SNR of 1

we increase the number of traces in the profiling set and the
number of informative points. As expected, template attacks
have reduced variance as well as error rate when increasing
the number of traces in the profiling set and when increasing
the number of informative points. The two previous results
suggest that machine learning algorithms could gain interest
if they have (1) a lower variance term compared to template
attacks and (2) still maintaining a sufficiently low bias term
(as template attack) allowing to obtain successful key recov-
eries.

5.3 Random forests

In general, the main advantage of template attacks as a pro-
filing method is the possibility to target complex leakage
functions. Our first experiment on random forest aims to ver-
ify whether random forest enjoys the same ability. Figure 9
plots the error rate, the bias and the variance of a random for-
est with 10 × 256 traces in the profiling set, 10 informative
points per trace, 1 attacking trace and an SNR of 1. The figure
shows that random forests are indifferent to changes in the
leakage function (similarly to template attacks). Moreover,
and as previously, we observe that random forests outper-
form template attacks in very high dimensionality contexts
(see Table 1 that summarizes the results of template attack
and random forest). More precisely, the higher the number
of irrelevant points, the higher the error rate for both mod-
els. Interestingly, the error rate of template attacks is mainly
due to a high variance while random forests seek to mini-
mize this variance term thanks to its bagging approach. So
the bias–variance decomposition here allows understanding
the complementary nature of these techniques.
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Fig. 9 Error rate, bias and variance of a random forest as a func-
tion of the number of irrelevant points per trace where u ∈
{0, 60, 120, 180, 240, 300}. There are 10 × 256 traces in the profil-
ing set, 10 informative points per trace, an SNR of 1, and the leakage
function is linear (in the left) and random (in the right). a Linear leakage
function, b random leakage function

Figure 10 shows additional results when we increase the
size of the profiling set as well as the number of informative
points. This new setting allows to reduce the variance and
the bias of a random forest. Table 2 summarizes the results
of template attacks and random forests in this new context.
Once again, this experiment highlights that the latter ones
gain interest in high dimensionality contexts. Moreover, the
increase in the number of irrelevant points has a lower impact
on the error rate of random forest compared to the error rate
of template attack.More precisely, the increase in the number
of irrelevant points impacts less the variance term of random
forests compared to the variance term of template attacks.
Interestingly, this discussion also allows to understand other
previous results obtained in the profiled side-channel attacks
literature [1,3,15–19,22–24,26,27,30,31].
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Table 1 Error rate of several
profiled attacks as a function of
the number of irrelevant points
per trace

u = 0 u = 60 u = 120 u = 180 u = 240 u = 300

Template attack 0.49 0.86 0.89 0.92 0.93 0.93

Random forest 0.77 0.80 0.82 0.83 0.84 0.85

There are 10 × 256 traces in the learning set, 10 informative points per trace, a random leakage, 1 attacking
trace and an SNR of 1
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Fig. 10 Error rate, bias and variance of a random forest as a function of
the number of irrelevant points per trace where u ∈ {0, 120, 240, 500}.
There are 30× 256 traces in the profiling set, 20 informative points per
trace, a random leakage, 1 attacking trace, and an SNR of 1

Table 2 Error rate of several profiled attacks as a function of the number
of irrelevant points per trace

u = 0 u = 120 u = 240 u = 500

Template attack 0.18 0.31 0.42 0.57

Random forest 0.28 0.34 0.37 0.41

There are 30× 256 traces in the learning set, 20 informative points per
trace, a random leakage, 1 attacking trace and an SNR of 1

6 Conclusion

Our results provide interesting insights on the curse of dimen-
sionality for side-channel attacks. From a theoretic point of
view, we first showed that as long as a limited number of
points of interests can be identified in leakage traces and
contain most of the information, template attacks are the
method of choice. Such a conclusion extends to any scenario
where the profiling can be considered as “nearly perfect.”
By contrast, we also observed that as the number of useless
samples in leakage traces increases and/or the size of the
profiling set becomes too limited, machine learning-based
attacks gain interest. In our simulated setting, the most inter-
esting gain is exhibited for random forest-based models,
thanks to their random feature selection. These observations
nicely fit to the observations made by Banciu et al. in a dif-
ferent context, namely simple power analysis and algebraic

side-channel analysis [2]. Our additional analyzes based on
the bias–variance decomposition also allow re-stating these
observations in more formal terms. That is, template attacks
are the method of choice as long as the variance term is low,
while machine learning algorithms or linear regression (that
can have a lower variance term than template attack) should
be used in high dimensionality contexts.

Admittedly, the simulated setting we investigated is prob-
ablymost favorable to template attacks, since only estimation
errors can decrease the accuracy of the adversary/evaluator
models in this case. One can reasonably expect that real
devices with harder to model noise distributions would
improve the interest of machine learning techniques com-
pared to efficient template attacks—as has been suggested
in previously published works. As a result, the extension of
our experiments toward other distributions is an interesting
avenue for further research. In particular, the study of leak-
age traces with correlated noise could be worth additional
investigations in this respect. Eventually, the bias–variance
decomposition of other profiled attacks (e.g., based on sup-
port vector machine and neural networks) represents future
work.

In summary, template attacks are the most efficient
strategies for well-understood devices, with sufficient pro-
filing, as they can approach the worst-case security level
of an implementation in such context. By contrast, machine
learning-based attacks (especially random forest) are promis-
ing alternative(s) in black box settings, with only limited
understanding of the target implementation and in high
dimensionality contexts.
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