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Bias-Variance Decomposition as a Diagnosis

Tool for Leakage Profiling
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Abstract—Evaluating the resistance of cryptosystems to side-channel attacks is an important research challenge. Profiled attacks
reveal the degree of resilience of a cryptographic device when an adversary examines its physical characteristics. So far, evaluation
laboratories launch several physical attacks (based on engineering intuitions) in order to find one strategy that eventually extracts
secret information (such as a secret cryptographic key). The certification step represents a complex task because in practice the
evaluators have tight memory and time constraints. In this paper, we propose a principled way of guiding the design of the most
successful evaluation strategies thanks to the (bias-variance) decomposition of a security metric of profiled attacks. Our results show
that we can successfully apply our framework on unprotected and protected algorithms implemented in software and hardware.

Index Terms—Side-channel attacks, profiled attacks, bias-variance decomposition, diagnosis tool, evaluation tool.
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1 INTRODUCTION

In 1996, Kocher introduced side-channel cryptanalyses
that analyze physical characteristics (called leakages or traces)
of cryptographic devices in order to extract secret infor-
mation [21]. The rationale is that the leakages of (hard-
ware and software) implementations depend on the ma-
nipulated data and the executed operations. As a result,
cryptographic algorithms secured from a point of view of
classical cryptanalysis can be insecured when implemented
in devices. Kocher exploited the execution time in order to
recover the secret key from several crypto systems. In 1999,
Kocher extended the previous proposition with (differential)
power analysis that compare the outputs of a leakage model
(parameterized by secret key hypotheses) with the actual
power leakages [22]. Nowadays, cryptanalytic side channel
attacks also employ other sources of emanations such as
the electromagnetic radiation [14] and the sound [15]. In
this paper, we focus on side-channel attacks based on the
power consumption and the electromagnetic radiation as
both leakages can be addressed using the same techniques.

The evaluators of the robustness of cryptographic de-
vices usually analyze several (evaluation) settings by vary-
ing, for example, the leakage dimension, the number of
leakages as well as the distinguishers (that compare actual
leakages with the modeled leakages). The large number of
possible evaluation settings requires to consider a significant
number of attack strategies that also depend on the a priori
information on the target device. Non-profiled attacks (intro-
duced by Kocher [22]) work under the assumption that the
adversary has a priori knowledge on the physical behavior
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of the cryptographic device (e.g., the power consumption
of a device linearly correlates to the manipulated data). By
contrast, profiled attacks exploit an offline learning step (also
known as profiling step) executed on a device (similar to
the target device) in order to automatically extract knowl-
edge about the leakage function [12]. We focus on profiled
attacks introduced as the strongest leakage analysis in an
information theoretic sense [4].

In practice, profiled attack strategies still require (1)
to minimize the number of estimated parameters of the
leakage model due to a limited number of measurements
available during the learning phase (that can lead to es-
timation error), and (2) to assume some knowledge on the
leakage distribution (that can lead to assumption error) when
the adversary considers parametric profiled attacks. These
constraints lead the cryptographic community to propose a
plethora of profiled attacks, e.g., [4], [23], [25], [31].

1.1 Our contributions
In Eurocrypt 2014, Durvaux et al. proposed a certification tool
to determine whether the estimated profiled attacks suffer
from an assumption error or from an estimation error [11]
(it was then simplified/specialized in 2016 [10]). Here we
complement the certification tool by providing a diagnosis
tool (based on the bias-variance decomposition [8], [9], [24])
that guides the design of the best profiled attack optimizing
one or several constraints decided by the evaluation labo-
ratory (e.g., maximizing the success probability of profiled
attacks with 5 attack traces measured on the target device
or minimizing the number of leakages required to reach the
success probability of 0.7) or assumed by the implemented
scheme (e.g., maximizing the success probability of profiled
attacks from a single leakage measured on a fresh re-keying
scheme [28]).

As far as we know, the certification process of cryp-
tographic devices consists of testing several popular pro-
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filed attacks with several settings in order to find the best
strategy. Nevertheless, this approach requires a significant
computational power. Here, we promote a technique that
starts with a specific evaluation setting (e.g., a low number
of leakages with a simple attack) and then refines the
attack according to our diagnosis tool. The rationale to
consider simple settings at the beginning of the evaluation
lies to a variance issue: the success probability of profiled
attacks with excessive complexity could be lower than the
success probability of simpler approaches (due to variance
issues). Note also that complex approaches suffer from high
time/memory complexity: the time/memory complexity in-
creases as a function of (1) the number of points per leakage,
(2) the number of leakages exploited during the learning
and the attack steps, and (3) (especially against protected
devices) the complexity of the attack.

Our diagnosis tool works in a systematic way (1) by
extracting each term impacting the error rate, and (2) by
reducing the contribution of those terms in order to reach
a lower error rate, optionally with respect to constraints
fixed by the evaluator (such as the number of leakages used
during the learning step). As the last step, an evaluator can
apply the certification tool of Durvaux et al. in order to
gauge the quality of the best attack found with the diag-
nosis tool whether the framework advises a profiled attack
providing probabilities for each target value (also known as
a probability-based profiled attack)1. It is worth to note that
our diagnosis tool works on probability-based and score-
based profiled attacks. We apply our framework to test eight
popular profiled attacks on actual datasets as well as on
simulated leakages. We demonstrate the usefulness of our
diagnosis tool by applying our framework on unprotected
and protected (software and hardware) implementations.

1.2 Related works

Our framework represents a counterpart in the profiled at-
tack approach of the recently proposed non-profiled stepwise
linear regression attacks [36]. More precisely, the stepwise
linear regression techniques tune the parameters of specific
probability-based non-profiled attacks while our approach
applies to all types of profiled attacks. Similarly, our di-
agnosis tool extends the papers of Choudary et al. that
report several guidelines in the context of template attacks
and stochastic attacks (representing well known probability-
based profiled attacks) [5], [6]. All the hints proposed by
Choudary et al. can be used in our diagnosis tool to avoid
several numerical and estimation issues as well as to reduce
the running time of the attacks (e.g., by exploiting dimen-
sionality reduction techniques and efficient profiled attacks).

The main advantages of our approach are: (1) the frame-
work can be applied to any profiled attack (including
probability-based and score-based profiled attacks) thanks
to the decomposition of a security metric (for example the
success rate or success probability, put forward by Standaert
et al. [33]), (2) the framework operates without any knowl-
edge of the true leakage distribution, and (3) the framework
works on unprotected and protected implementations.

1. The certification tool of Durvaux et al. operates only on probability-
based profiled attacks.

We base our approach on the bias-variance decompo-
sition [8], [9], which was recently introduced to the field of
side-channel analysis by Lerman et al. [24]. Our paper differs
from the paper of Lerman et al. in three main points:

1) We use the bias-variance decomposition for differ-
ent goals. We do not only use this tool in order to
find out what impacts the error rate of template at-
tacks and stochastic attacks but we also exploit this
tool in order to extract the best profiled attack (i.e.,
fine-tune the meta-parameters). Thus, we provide
a framework that can be efficiently applied during
the evaluation of cryptographic systems taking into
account real-world constraints.

2) We study additional profiled attacks in order to
cover all types of profiled attacks. We do not only
analyze probability-based profiled attacks (i.e., tem-
plate attacks and stochastic attacks) but we ad-
ditionally study score-based profiled attacks and
demonstrate that our diagnosis tool can be used on
any profiled attacks.

3) We conducted the experiments in different settings.
We do not only test attacks on simulated leakages
(that highlight the usefulness of this approach from
a theoretical point of view) but we also consider
experiments on real power traces collected on an
unprotected and a protected implementations (in
hardware and in software), which allows to evaluate
our diagnosis tool in practice.

1.3 Organization of this paper
The rest of the paper is organized as follows. Section 2
contains preliminary notions on physical attacks. Section 3
provides introduction to the bias-variance decomposition.
Section 4 details our diagnosis tool, and the results of its
application on profiled attacks against unprotected software
as well as hardware implementations. Section 5 extends the
results of Section 4 to a protected environment. Section 6
analyses the impact of an assumption made during the
experiments. Finally, Section 7 concludes the paper.

2 BACKGROUND ON SIDE-CHANNEL ATTACKS

2.1 Physical attacks
We assume that the adversary wants to retrieve the secret
key used when the cryptographic device (that executes a
known encryption algorithm) encrypts known plaintexts.
In order to find the secret key, the adversary targets a
set of key-related information (called the target intermediate
values) with a divide-and-conquer approach. The divide-and-
conquer strategy extracts information on separate parts of
the secret key (e.g., the adversary extracts each byte of the
key independently) and then combines the results in order
to get the full secret key. In the following, we systematically
use the term key to denote the target of our attacks, though,
in fact, we address one byte at a time.

During the execution of the encryption algorithm, the
cryptographic device processes a function f (e.g., the SBox
of the block-cipher AES)

f : P ×K → Y (1)
y = fk(p),
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that outputs the target intermediate value y and where
k ∈ K is a key-related information (e.g., one byte of the
secret key), and p ∈ P represents information known by the
adversary (e.g., one byte of the plaintext). For the sake of
simplicity, we assume that (1) the function f is bijective, (2)
the output of the function f is encoded using 8 bits, and (3)
the adversary targets one byte of the key.

2.1.1 Side-channel attacks
Let jT y be the j-th leakage measured when the device
manipulates the value y. In the following, we represent each
leakage with a vector of real values measured at different
instants on the analyzed device. The number of samples
(i.e., the length of the vector jT y) equals to n in unprotected
contexts. We denote j

tT y the j-th leakage (associated to the
target value y) measured at time t such that:

j
tT y = tL (y) + j

tεy, (2)

= tL (fk (p)) + j
tεy, (3)

where j
tεy ∈ R is the noise of the trace j

tT y (i.e., a standard
additive noise assumption defined by Mangard et al. [26])
following for example a Gaussian distribution, and tL is
the (deterministic) leakage function at time t. Let assume
that the adversary targets the output of the function fk (p).
The function tL can be linear or nonlinear of the output
bits of fk (p) [1]. More precisely, we say that the leakage
functions are linear if they provide leakages j

tT y depending
on the weighted sum of each bit of the output of fk (p)
while nonlinear leakage functions provide leakages j

tT y

depending on the weighted sum of products of bits of the
output of fk (p). Formally, we consider polynomial (leakage)
functions tL (y), i.e.:

tL (y) = tc+
∑
u

tαu gu (y), (4)

where tc and tαu are real numbers while gu(y) is a mono-
mial of the form

∏
b∈B Bitb (y) in which Bitb (y) returns

the b-th bit of y and B ⊂ {1, 2, ..., 8}. This represents
a usual assumption in side-channel attacks [31]. Linear
leakage functions consider that the cardinality of B in each
monomial equals to 1 while nonlinear leakage functions
contain monomials (with a non-zero coefficient) of the form∏

b∈B Bitb (y) in which the cardinality of B is strictly bigger
than 1. Evaluators often model leakage functions as (1)
the Hamming weight of the manipulated value y (denoted
HW(y)) for software implementations (representing a linear
leakage function), and (2) the Hamming distance (HD)
between two manipulated values for hardware implemen-
tations (representing a nonlinear leakage function since if a
and b are in {0, 1}, then the Hamming distance between a
and b equals to a+ b− 2ab)2.

A side-channel attack is a process during which an attacker
analyses leakages measured on a target device in order to
extract information on the secret value. In order to protect
the implementations against physical attacks, the designers
employ (among others) d-order masking techniques that
split each sensitive information y (that depends on the
secret key) in d + 1 uniformly distributed variables (called

2. Note that the HD is linear if viewed as a function of the bit flips.

shares), denoted {x0, x1, ..., xd}, such that y =
∑d

i=0 xi
(where

∑
represents the method combining shares) [3], [16].

Typically, the shares {x1, ..., xd} represent d uniformly dis-
tributed random values (called the masks) while x0 equals
to y +

∑d
i=1 xi. The masking schemes (of order d) leak

no information on the sensitive variable y whenever the
adversary combines strictly less than d+ 1 different instants
in order to recover the sensitive information (when each
sample depends on a different share). In the following, we
assume that the masking techniques of order d use d + 1
shares, leading to (d + 1, d + 1) secret sharing schemes.
Furthermore, in protected contexts, we denote n the number
of samples in the vector jT y associated to one share (i.e., jT y

contains n× (d+ 1) samples in total).
Profiled attacks (belonging to side-channel attacks) rep-

resent efficient attacks thanks to a learning step (also known
as a profiling step). More precisely, these approaches build
a distinguisher A(TPS, TAS) that:

1) during the profiling step, it estimates a parameter
θ with a set of leakages (called profiling set and
denoted TPS) containing Np (profiling) traces per
target value, and

2) during the attack step, it returns the extracted secret
key k from a set of attack leakages TAS (called
attacking set) measured on the target device using
a constant secret key.

The quality of the distinguisher can be analyzed by estimat-
ing the success rate, i.e. the probability that the distinguisher
returns the right key based on a set of attack traces. The error
rate equals to the probability that the distinguisher does not
return the right key based on the attacking set.

The Bayes classifier (also known as the Bayes) denotes the
best possible theoretical attack which practical attacks can
reach when there is no assumption error and no estimation
error. More formally, let Ab(·) be the Bayes classifier that
takes as input a set of attack traces TAS, the function Ab(·)
represents a classifier that minimizes the error rate, i.e.:

Ab(TAS) ∈ argmax
k∈K

Pr [k | TAS] (5)

= argmax
k∈K

Pr [TAS | k]× Pr [k] . (6)

Note that several values k could maximize the value
Pr [TAS | k]×Pr [k], leading to a set of possible keys (which
explains the symbol ∈ in Equation 5). Note also that, in
the side-channel attacks literature, the Bayes classifier repre-
sents the model estimating Equation 6 while, in this paper,
the Bayes classifier refers to the optimal classification with
known probability density functions used in Equation 6.

2.2 Concrete distinguishers

In practice, an adversary estimates the Bayes classifier (i.e.,
the Equation 6) with concrete distinguishers detailed in this
section. In the following, we define the complexity of an attack
by the number of parameters to estimate (i.e., for a given
distinguisher, an increase of the number of parameters to
estimate leads to an increase of the complexity of the attack).
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2.2.1 Template attacks

(Gaussian) Template attacks (TA) [4] estimates the Equation 6
by assuming that Pr

[
jT y | y

]
follows a Gaussian distri-

bution N (µ̂y, Σ̂y) for each value y where µ̂y and Σ̂y are
respectively the sample mean and the sample covariance
matrix of the traces associated to y. In what follows we
assume that the noise is independent of y in unprotected
contexts [6]. This property allows to estimate the same
physical noise (represented by Σ) for all the target values. By
contrast, in protected settings exploiting first-order masking
schemes, we assume that the adversary has no information
on the shares (except the instants depending on the shares)
during the profiling step leading to a dependency between
the second-order moment Σy and the sensitive information
y. Note that the adversary can know the mask values during
the profiling step and still not use them in order to speed
up the attack phase by exploiting less templates. In the
following we will relax this assumption, which leads to an-
other attack (that we call stochastic-based mixture attacks).
Note also that template attacks using no information on the
mask values (during the profiling step) allow us to highlight
the effect on the outputs given by the diagnosis tool when
the evaluators exploit bias models. Indeed, in protected
contexts, template attacks (unlike template-based mixture
attacks that take into account the mixture structure of the
probability density function) represent biased models since
these attacks assume that the leakages associated to a sensi-
tive information y (split in several shares {x0, ..., xd}) follow
a Gaussian distribution (i.e., by estimating Pr

[
jT y | y

]
with

one Gaussian distribution) while the leakages follow a mul-
timodal distribution, i.e.:

Pr
[
jT y | y

]
=

∑
x1,...,xd

Pr

[
jT y | x1, ..., xd, x0 = y +

d∑
i=1

xi

]
× Pr [x0, ..., xd] , (7)

where Pr
[
jT y | x1, ..., xd, x0 = y +

∑d
i=1 xi

]
(in which the

symbols
∑

and + represent the methods combining shares)
follows a Gaussian distribution if we consider Gaussian
noise. In other words, although the unbiased/optimal pro-
filed attacks represent the Gaussian mixture templates at-
tacks (in which the adversary estimates the multimodal
Gaussian distribution with a mixture of Gaussian distribu-
tions), we exploit (unimodal) template attacks that work if
the first or the second order moments contain information
on the target value (e.g., unimodal template attacks ap-
plied on first-order masking schemes). Note that unimodal
template attacks extract the same quantity of information
from the leakages as template-based mixture attacks if the
leakages contain a high physical Gaussian noise and if
the target implementation executes a first-order masking
scheme (as reported by Grosso et al. [17]).

During the attack step, the adversary classifies TAS ={
1T , ...,NaT

}
(where jT denotes the j-th measurement on

the target device, and Na is the number of attack traces) by

using the equation:

k̂ ∈ arg max
k∈K

Na∏
j=1

Pr
[
jT | y = fk(pj)

]
× Pr [y = fk(pj)], (8)

≈ arg max
k∈K

Na∏
j=1

P̂r
[
jT | y = fk(pj); θ̂y

]
× P̂r [y = fk(pj)] , (9)

where θ̂y = {µ̂y, Σ̂y}, and pj is the j-th plaintext used by the
device when the adversary measured the j-th attack trace.

2.2.2 Stochastic attacks and stochastic-based mixture at-
tacks
Stochastic attacks (SA) [31] model the leakage information at
time t as a function of the target value y with a regression
model h spanned by U functions gu (where u ∈ [1;U ]), i.e.:

j
tT y = h (y, tθ) + j

tεy, (10)

= tc+
U∑

u=1

tαu gu (y) + j
tεy, (11)

where tθ = {tc, tα1, ..., tαU} ∈ RU+1 represents the param-
eter of the regression model h at time t. Stochastic attacks
assume that gu is a monomial of the form

∏
b∈B Bitb (y)

where Bitb (y) returns the b-th bit of y and B ⊂ {1, 2, ..., 8}.
We define the degree of a stochastic attack as the maximum

number of variables in each monomial of h with a non-
zero coefficient. More formally, stochastic attacks of degree
i contain all the monomials of the form

∏
b∈B Bitb (y) in

which the cardinality of B is in {1, 2, ..., i}. We denote SAi
stochastic attacks of degree i (e.g., SA1 denotes stochastic
attacks of degree 1). Note that, in unprotected contexts, tem-
plate attacks are equivalent to stochastic attacks of degree 8
when the adversary estimates only one Σ for all the target
values (see Section 2.2 “Profiled attacks” in [24]). As a result,
in unprotected contexts, stochastic attacks of degree strictly
less than 8 represent distinguishers with lower complexity
than template attacks.

In protected environments, each function h takes as
input the value of one share. For example, if the device
manipulates the share xi at time t, then stochastic attacks
modelize the deterministic part of the leakage at time t
by h (xi, tθ). As a result, unlike with template attacks, we
assume that the stochastic attacks (that we call stochastic-
based mixture attacks in protected contexts) know the value
of the manipulated masks during the profiling step.

Regarding the attack step against an unprotected
implementation, the adversary uses Equation 8 by as-
suming that Pr

[
jT y | y

]
follows the Gaussian distribu-

tion N (h (y, θ),Σ) where h(y, θ) represents the vector
[h(y, 1θ), h(y, 2θ), ..., h(y, nθ)], n represents the number of
samples (i.e., the length of jT y), and Σ is the covariance
matrix of the residual term3. In a protected environment,
due to the fact that the adversary has no a priori knowledge
on the value of the manipulated masks during the attack

3. The residual term represents the deviation of the actual leakages
(associated to known keys and known plaintexts) from the output
provided by the estimated leakage model (parametrized with the same
keys and plaintexts).
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step, we consider stochastic-based mixture attacks iterating
on all the possible mask values, leading to the selection of k
maximizing the following equation:

Na∏
j=1

∑
x1,...,xd

Pr

[
jT | x1, ..., xd, y = fk(pj), x0 = y +

d∑
i=1

xi

]
× Pr [x0, ..., xd] . (12)

In other words, in protected contexts, we define the
stochastic-based mixture attacks as a (finite) sum (also
known as a mixture) of Gaussian distributions given that
Pr
[
jT | x1, ..., xd, y = fk(pj), x0 = y +

∑d
i=1 xi

]
follows a

Gaussian distribution if we consider Gaussian noise. As
a result, unlike profiled attacks which ignore the mixture
structure, attacks (whether classical template or stochastic-
based) which model the mixture structure represent unbi-
ased models (if the leakages contain Gaussian noise and
if the stochastic-based model contains the right degree)
since such adversaries take into account the multimodal
structure of the probability density function associated to
each sensitive value y split in several shares.

2.2.3 Profiled correlation power analysis
In 2000, Coron et al. [7] and Mayer-Sommer [27] proposed
the Correlation Power Analysis (CPA) that recover the key
from the target device by selecting the key that maximizes
the absolute value of the (Pearson) correlation between
the actual leakages and the estimated leakages based on
the assumed secret key. Profiled Correlation Power Anal-
ysis (PCPA) model the leakage function of each instant from
a profiling set with a model. More precisely, PCPA based
on template attacks (denoted PCPA-TA) consider that the
leakage model associated to the target value y equals to µ̂y

while PCPA based on stochastic attacks of degree i (denoted
PCPA-SAi) assume that the leakage model equals to h(y, θ̂).
As a result, PCPA skip the estimation of the Σ parameter.
In the following, we will show that the diagnosis tool also
works on score-based profiled attacks by exploiting PCPA.

3 BIAS-VARIANCE DECOMPOSITION OF THE ER-
ROR RATE

In this section, we detail the bias-variance decomposition (of
the error rate) used in our decision tool and recently intro-
duced in the side-channel literature by Lerman et al. [24].

3.1 Preliminary notions

Domingos showed that the error rate of a classifier can be
decomposed into three components [8], [9]: the error rate of
the Bayes classifier Rb(·), the bias B(·) and the variance V(·),
generally leading to the equality:

Error rate =ETAS
[c1 × Rb(TAS)] (13)

+ ETAS
[B(TAS)] Bias

+ ETAS
[c2 × V(TAS)] , Variance

where E denotes the mean operator, the two values c1 and
c2 are in R, and Rb(TAS), B(TAS) and V(TAS) are three
functions providing values in R.

The loss function (denoted LOSS(k, k′)) represents the
cost of predicting k′ when the true target value is k. In this
paper we consider the zero-one loss function: the cost is zero
when k equals to k′ and one in the other case.

The main prediction (denoted Am(TAS)) represents the
most frequent prediction on the set of attack traces TAS

given by the estimated classifier when varying the profiling
sets4. The bias term represents the difference (according
to the loss function) between the main prediction and the
prediction provided by the Bayes classifier, i.e.:

B(TAS) = LOSS(Am(TAS),Ab(TAS)). (14)

The variance measures the variation of a prediction on a set
of attack traces as a function of different profiling sets, i.e.:

V(TAS) = ETPS [LOSS(Am(TAS),A(TAS, TPS))] , (15)

where A(TAS, TPS) represents a profiled attack using the
profiling set TPS and the attacking set TAS.

Based on these notations, Domingos demonstrated that
the multiplicative factors c1 and c2 equal:

c1 = Pr [A = Ab]− Pr [A 6= Ab]× Pr [A = k | Ab 6= k] , (16)

c2 =

{
−Pr [A = Ab | A 6= Am] Am 6= Ab

1 Am = Ab
, (17)

where A = A(TAS, TPS), Ab = Ab(TAS) and Am = Am(TAS).
Figure 1 illustrates the bias-variance decomposition for

two profiled attacks. In this figure, attack 1 contains a high
bias (since the most frequent prediction given by attack 1
differs from the output of the Bayes classifier) but a smaller
variance compared to attack 2.

In the following, we use the terms bias and vari-
ance to denote respectively the average of the bias (i.e.,
ETAS [B(TAS)]) and the weighted average of the variance
(i.e., ETAS [c2 × V(TAS)]). As a result, this weighted variance
term can be negative according to the value of c2.

3.2 Estimation of the bias and of the variance terms
In practice, the evaluator has one data source which he ran-
domly splits into two disjoint subsets: a profiling source and
an attack source. The first source provides leakages used
to build the classifiers while the second source generates
leakages to estimate the error rate, the bias and the variance.

Following the proposition of Valentini et al. [34], in our
experiments, in order to decompose the error rate of an
attack A(·, ·) we build a set of distinguishers (of the same
complexity5 and evaluation settings) created with different
profiling sets generated by sampling (with replacement) the
profiling source. This resampling approach provides several
distinguishers with different estimated parameters θ̂. We es-
timate the bias and the variance terms by sampling (without
replacement) the attack source. More precisely, we average
the estimated bias and the estimated variance obtained on
each attacking set sampled from the attack source.

4. The generated profiling sets have the same cardinality (e.g., in
unprotected contexts, each set contains Np leakages per target value
and n samples per leakage) and they are sampled from the space of
sets of leakages.

5. The complexity of an attack is defined by the number of parameters
to estimate (as presented in Section 2.2).
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Fig. 1: Illustration of the bias-variance decomposition for
two profiled attacks by reporting the probability to output a
key value with a fixed attacking set when the actual (target)
key value equals to 42. The probability to output a key value
depends on the profiling set. For the sake of simplicity, we
assume that the error rate of the Bayes classifier equals to
zero.

It is worth to note that, in practice, the evaluator does
not know which profiling set neither which attacking set
will be used by the adversary. As a result, independently
of the use of our diagnosis tool, an evaluator requires to
build several profiled attacks (with the same complexity
and evaluation settings but with different profiling sets)
using several attacking sets in order to estimate the error
rate. In this paper, we demonstrate that the evaluator can
exploit all the constructed profiled attacks in order to obtain
a diagnosis tool with a small overhead. Note also that by
building more attacks and by increasing the number of
attacking sets, we increase the accuracy of estimations of
the bias, of the variance and of the error rate.

3.3 Oracle model

In a realistic evaluation scenario, an evaluator has no access
to the Bayes classifier (representing the best physical attack
minimizing the error rate) during the estimation of the bias
and the variance terms. More precisely, the evaluators of
crypto systems lack knowledge (1) on the structure of the
leakage distributions (leading to assumption errors), and (2)
on the best values (i.e., maximizing the success probability)
of the estimated parameters used by the classifier (leading
to estimation errors). In practice, we counteract this issue
by replacing the Bayes classifier by the Oracle model that
represents an idealization of the Bayes classifier. The Oracle
model (also known as the Oracle) denotes an adversary that
extracts and outputs the correct key from a set of attack
traces regardless of the quantity of information present in

the attacking set. In other words, the error rate of the Oracle
model equals to zero.

We demonstrate in Section 4 and Section 5 that the Oracle
model provides useful information on the bias and variance
terms in practice. Furthermore, we rationalize the substitu-
tion of the Bayes classifier by the Oracle model in Section 6.
Informally, the accuracy of this approach increases with the
decrease of the overlap between the true probability density
functions of the leakages (related to different keys).

3.4 Diagnosis tool and guidelines
The bias-variance decomposition of the error rate allows to
figure out how to tune and to improve an attack. Several
ways exist in order to reduce the bias or the variance. In
the following, we consider three parameters that can be
optimized: (1) the error rate and/or the number of attack
leakages, or (2) the number of profiling leakages. For exam-
ple, an evaluator may vary the number of profiling leakages
in order to reach an error rate of 0.2 with 5 attack leakages.

Based on the considered constraints, the evaluator can
reduce the variance by increasing the size of the profiling
set [2]. Note however that the machine learning theory says
that the increase of the profiling set does not impact the
bias term (see for example the paper of Domingos [9]). The
classifiers having small complexity/variance should be used
(e.g., SA1 in unprotected contexts) if the evaluator requires
to fix the profiling set to a small size [24]. Furthermore,
the bias contribution in the error rate can be reduced by
increasing the complexity of the model (potentially at the
cost of increasing the variance contribution in the error
rate) or by increasing the size of the attacking set [19].
Finally, if the number of points related to the target value
increases, the bias term reduces but the variance term can
increase (because we have more parameters to estimate) or
can reduce (because we increase the quantity of information
related to the target value in each leakage) [35]. Table 1
resumes the impact of each parameter on the bias and on
the variance terms. Note that, in this paper, we consider
DPA scenario (where we target an operation that involves
known plaintexts and a fixed key) while other outcomes
could be obtained in other settings.

It is worth to note that we reduce the variance of the
estimation of metrics (1) by increasing the number of at-
tacking sets provided by the attack source, (2) by increasing
the number of estimated distinguishers, and (3) by reducing
the noise in the leakage (in order to reduce the error of the
assumption that the Bayes classifier equals to the Oracle
model).

4 EXPERIMENTS ON UNPROTECTED DEVICE

In this section, we show how a simple approach (i.e., the
bias-variance decomposition) guides the evaluators to find
the best profiled attack against an unprotected device. More
precisely, the evaluators reduce the error rate of a strategy
by reducing the term dominating the error rate.

4.1 Acquisition setup
A set of 80 000 power traces was collected on an 8-bit Atmel
(ATMega 328) microcontroller at a 16 MHz clock frequency.
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Bias Variance

↗ size of profiling set − ↘

↗ complexity of the model ↘ ↗

↗ size of the attacking set ↘ ?

↗ number of points of interest ↘ ?

TABLE 1: Impact of each parameter on the bias and on the
variance terms. The symbol↗ and↘ represent respectively
an increase and a decrease of the term/parameter. The
symbol − is used when the term does not change while
the symbol ? represents an unknown effect on the term.

The power consumption of the device was measured using
an Agillent Infiniium 9000 Series oscilloscope that was set
up to acquire 200 MSamples/s. In order to measure the
device’s power consumption we inserted a 10 Ω resistor
placed between the ground pin of the microcontroller and
the ground of the power supply. In order to reduce noise in
power traces we used averaging (done be the oscilloscope),
thus each power trace represents an average of 64 single
acquisitions. We separate the dataset of 80 000 power traces
into two parts: the profiling source (containing 56 000 traces)
and the attack source (containing 24 000 traces).

Our target device executes AES using a constant 128-bit
key and random plaintexts. We target the first round of the
cipher (manipulating the AES SBox) and focus on the first
byte of the key.

4.2 Case studies
We vary five parameters in our experiments: (1) the number
of points per trace, (2) the number of profiling traces per
target value, (3) the number of attack traces, (4) the type
of attack and (5) the leakage degree/complexity. The main
purpose is to provide a large quantity of information allow-
ing to play with a large quantity of stories (representing a
sequence of steps allowing to reach a final setting starting
from one setting) although we exhibit three stories that
evaluators may meet against unprotected devices, leaving
the other stories to be discovered by the interested readers.

Our experiments test eight popular families of profiled
attacks: template attacks, three stochastic attacks (of degrees
1, 2 and 3), as well as profiled correlation power attacks
based on template attacks and based on three different
stochastic attacks (of degrees 1, 2 and 3).

We consider several scenarios by using three different
sizes of the attacking set (Na ∈ {5, 10, 20}), two different
sizes of the profiling set (Np ∈ {3, 10}), five different
leakage dimensions (n ∈ {1, 2, 5, 10, 20}) and two different
leakage functions.

We consider a linear feature selection6 in order to reduce
the dimensionality of the problem by selecting points that
correlate (linearly) with the Hamming weight of the output
of the SBox7. This approach allows to simulate two leakage

6. We estimate the Pearson correlation with 1 000 leakages from the
profiling source.

7. Note that, during our experiments, the dimensionality reduction
algorithm selected points correlated (linearly) the most with the output
of the SBox. Nevertheless, this provide points highly correlated to
the Hamming weight of the output of the SBox thanks to the high
correlation between {0, ..., 2m−1} and HW({0, ..., 2m−1}) for small m.

functions: a linear leakage function (when the adversary
targets the output of the SBox), and a nonlinear leakage
function (when the adversary targets the input of the SBox).
It is also worth to note that linear feature selections speed
up the execution of the diagnosis tool. However, we advise
to use a nonlinear feature selection algorithm (such as the
minimum redundancy maximum relevance proposed by
Peng et al. [29]) in an evaluation case in order to extract
all the information available in the leakages.

For each case study, we estimate the parameters of each
profiled attack 100 times (with different profiling sets).
This number of estimated distinguishers already provides
interesting insights on the quantity of bias and variance. An
interesting future work can be to find strategies extracting
the best number of profiled attacks to build.

Section 2.2.2 reports that, in unprotected contexts,
stochastic attacks of degree strictly less than 8 represent
distinguishers with lower complexity than template attacks.
As a result, template attacks contain a lower bias (but a
higher variance) than stochastic attacks of degree strictly
less than 8. This is why we assume in the following that the
best profiled attack (that we can mount against unprotected
devices) represents a template attack having a large profiling
set (that leads to a small variance term). Figure 2 plots the
error rate of template attacks as a function of the number
of attack traces, the number of points per trace, as well as
the number of profiling traces. This figure highlights (1)
the lower bound of the error rate of considered attacks,
and (2) the difficulty of estimating the actual bias and
the actual variance terms due to the assumption that the
Bayes classifier equals to the Oracle model. More precisely,
Section 6 demonstrates that the accuracy of the bias-variance
decomposition increases with the decrease of the error rate
of the Bayes classifier. In the case study using 5 attack traces
and 1 point per leakage, the best attack that we can mount
converges to an estimated error rate of at least 0.89 (which
represents the estimated error rate of the Bayes classifier). As
a result, the bias-variance decomposition based on the Bayes
classifier could significantly differ from the bias-variance
decomposition based on the Oracle model (leading to a
high estimation error of the decomposition of the error
rate). Although small attacking sets can provide inaccurate
estimation of the bias and variance terms, the rationale to
consider such small sets by evaluators relies on several
factors such as the running time of the evaluation (i.e., the
smaller the attacking set, the lower the running time) and
constraints decided by the executed cryptographic device
(e.g., fresh re-keying scheme constraints the size of the
attacking set to small values for evaluators). Nevertheless,
we demonstrate in the following that an evaluator can still
extract information on the contribution of the bias and the
variance terms.

4.3 Bias-variance decomposition of probability-based
profiled attacks

Tables 2 and 3 provide the bias-variance error rate decompo-
sition of respectively stochastic attacks and template attacks
when the adversary targets the output of the SBox (that sim-
ulates a linear leakage function). Due to space constraints,
we describe only a couple of scenarios. Let assume that the
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Fig. 2: Error rate of template attacks as a function of the
number of profiling traces per target value, the number of
points per trace and the number of attack traces (Na) for
unprotected software implementation.

adversary applies template attacks with 10 attacking traces,
3 profiling traces per target value and 1 point per leak-
age. The bias reaches a high value (0.66) compared to the
variance (0.16) leading to a high error rate (0.82). In order
to reduce the bias, the adversary can use template attacks
using more points per leakage. The adversary reaches the
error rate of 0.25 by using 5 points per trace leading to a
lower bias (0.04) but a higher variance (0.21) due to the
increase of the number of estimated parameters. In order
to reach a lower error rate of 0.10, the attacker can select
stochastic attacks of degree 1 leading to a lower variance
(0.01) at the cost of a small increase of the bias (0.09) due to
the decrease of the complexity of the distinguisher.

Tables 4 shows the bias-variance error rate decomposi-
tion of template attacks and stochastic attacks when the
adversary targets the input of the SBox while the leakage
depends on the output of the SBox (i.e., a simulation of a
nonlinear leakage function). Let assume that the adversary
first applies stochastic attacks of degree 1 using 5 attack
traces, 3 profiling traces and 1 point per leakage. The ex-
periment leads to a high bias of 0.99, a very low variance
of 0.00 and an error rate of 0.99. In this case, the adversary
can reduce the bias term by using template attacks, which
provide a bias of 0.89, a variance of 0.05, and an error rate
of 0.94. The high bias of stochastic attacks and template
attacks highlights that we should increase the number of
points per leakage to, for example, 5 in order to reach a
lower bias term of 0.39 leading to a decrease of the error
rate to 0.69 (although the variance term increases to 0.29
due to the increase of the complexity of the distinguisher).

Na Np n
Error rate composition

Bias Variance Total

SA1

5

3

1 0.93 0.00 0.94
2 0.66 0.01 0.67
5 0.51 0.03 0.54
10 0.15 0.02 0.17
20 0.02 0.01 0.02

10

1 0.93 0.00 0.93
2 0.66 0.00 0.67
5 0.52 0.01 0.52
10 0.15 0.01 0.16
20 0.02 0.00 0.02

10

3

1 0.66 0.01 0.67
2 0.21 0.00 0.21
5 0.09 0.01 0.10
10 0.00 0.00 0.00
20 0.00 0.00 0.00

10

1 0.66 0.00 0.67
2 0.21 0.00 0.21
5 0.09 0.00 0.09
10 0.00 0.00 0.00
20 0.00 0.00 0.00

SA2

5

3

1 0.93 0.01 0.94
2 0.64 0.04 0.68
5 0.50 0.09 0.58
10 0.12 0.06 0.18
20 0.01 0.01 0.02

10

1 0.93 0.00 0.93
2 0.65 0.01 0.66
5 0.50 0.03 0.53
10 0.12 0.02 0.14
20 0.01 0.00 0.01

10

3

1 0.78 0.03 0.81
2 0.19 0.04 0.23
5 0.08 0.05 0.12
10 0.00 0.00 0.00
20 0.00 0.00 0.00

10

1 0.78 0.02 0.80
2 0.19 0.01 0.20
5 0.07 0.01 0.09
10 0.00 0.00 0.00
20 0.00 0.00 0.00

TABLE 2: Error rate decomposition of stochastic attacks
of degree 1 and 2 (denoted respectively SA1 and SA2)
targeting the output of the SBox of an unprotected software
implementation. Each distinguisher uses Na attack traces,
Np profiling traces per target value, and n points per trace.

4.4 Bias-variance decomposition of score-based pro-
filed attacks

Table 5 shows the bias-variance decomposition of the error
rate of score-based profiled attacks based on profiled cor-
relation power analysis exploiting one point per leakage
and targeting the output of the SBox. Let assume that
the attacker first tests a PCPA-SA1 (i.e., profiled correla-
tion power analysis using stochastic attacks of degree 1)
with 10 attacking traces and 3 profiling traces per target
value. The strategy exhibits a high bias of 0.82 and a low
variance of 0.01 leading to an error rate of 0.83. In order
to reduce the error rate, the attacker can change PCPA-
SA1 to more complex distinguishers such as PCPA-TA (i.e.,
profiled correlation power analysis using template attacks).
This change decreases the bias term to 0.67 at the cost of an
increase of the variance term to 0.17 leading to an increase
of the error rate of 0.84. Note that although we increase
the error rate, we know that this change can be helpful
whether we increase eventually the size of the profiling
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Na Np n
Error rate composition

Bias Variance Total

TA

5

3

1 0.89 0.05 0.94
2 0.54 0.19 0.73
5 0.40 0.29 0.69
10 0.06 0.24 0.30
20 0.00 0.01 0.01

10

1 0.89 0.02 0.91
2 0.55 0.07 0.62
5 0.39 0.14 0.53
10 0.06 0.07 0.13
20 0.00 0.00 0.00

10

3

1 0.66 0.16 0.82
2 0.11 0.22 0.32
5 0.04 0.21 0.25
10 0.00 0.02 0.02
20 0.00 0.00 0.00

10

1 0.67 0.07 0.74
2 0.11 0.07 0.18
5 0.04 0.05 0.10
10 0.00 0.00 0.00
20 0.00 0.00 0.00

TABLE 3: Error rate decomposition of template attacks (de-
noted TA) targeting the output of the SBox of an unprotected
software implementation. Each distinguisher uses Na attack
traces, Np profiling traces per target value, and n points per
trace.

Na n
Error rate composition

Bias Variance Total

SA1

5
1 0.99 0.00 0.99
2 0.99 0.00 0.99
5 0.99 0.00 0.99

10
1 0.99 0.00 0.99
2 0.99 0.00 0.99
5 0.99 0.00 0.99

SA2

5
1 0.99 0.00 0.99
2 0.97 0.01 0.98
5 0.97 0.01 0.98

10
1 0.97 0.01 0.98
2 0.95 0.01 0.96
5 0.94 0.03 0.97

SA3

5
1 0.96 0.01 0.97
2 0.92 0.02 0.94
5 0.90 0.05 0.95

10
1 0.92 0.02 0.94
2 0.80 0.06 0.86
5 0.74 0.15 0.89

TA

5
1 0.89 0.05 0.94
2 0.54 0.19 0.73
5 0.39 0.29 0.69

10
1 0.65 0.17 0.82
2 0.11 0.21 0.32
5 0.04 0.21 0.25

TABLE 4: Error rate decomposition of template attacks
(denoted TA) and stochastic attacks of degrees 1, 2 and 3
(denoted respectively SA1, SA2 and SA3) targeting the input
of the SBox of an unprotected software implementation.
Each distinguisher uses Na attack traces, 3 profiling traces
per target value, and n points per trace.

set to 10 profiling traces per target value. Indeed, this last
change decreases the variance to 0.08 (whereas the bias
term remains constant) leading to a decrease of the error
rate to 0.74. This example highlights that the security metric
without its decomposition does not provide enough infor-

Na Np
Error rate composition

Bias Variance Total

PCPA-SA1
10 3 0.82 0.01 0.83

10 0.82 0.00 0.82

20 3 0.41 0.01 0.42
10 0.41 0.01 0.42

PCPA-SA2
10 3 0.80 0.03 0.83

10 0.81 0.01 0.82

20 3 0.37 0.07 0.44
10 0.38 0.02 0.40

PCPA-SA3
10 3 0.77 0.07 0.84

10 0.78 0.03 0.81

20 3 0.33 0.13 0.46
10 0.32 0.05 0.37

PCPA-TA
10 3 0.67 0.17 0.84

10 0.66 0.08 0.74

20 3 0.17 0.26 0.43
10 0.17 0.08 0.25

TABLE 5: Error rate decomposition of profiled correlation
power analysis using template attacks (denoted PCPA-TA)
and stochastic attacks of degrees 1, 2 and 3 (denoted PCPA-
SA1, PCPA-SA2 and PCPA-SA3) targeting the output of
the SBox of an unprotected software implementation. Each
distinguisher uses Na attack traces, Np profiling traces per
target value, and 1 points per trace.

mation on how to improve the efficiency of attacks. Note
that an adversary could reduce the bias term by increasing
the number of points per leakage, which allows to reduce
the error rate of the profiled attacks.

Noisy hardware contexts
The previous sections show that an evaluator can exploit our
diagnosis tool on unprotected software implementations.
This section attests that an adversary can also apply the
same diagnosis tool on a more challenging hardware noisy
context. More precisely, we employ the public dataset of the
second version of the DPAContest8. The public dataset con-
tains 1 640 000 traces collected on an FPGA implementing
the unprotected AES-128. We consider 70% of the dataset for
the profiling source and the reminder for the attack source.
We target the Hamming distance between the first byte of
the ciphertext and the first byte of the input of the SBox
executed during the last round. For the sake of place, Table 6
reports the results only for template attacks and profiled
correlation power analysis based on template attacks. Let
assume that the evaluator starts with template attacks using
1 000 attack traces, 200 profiling traces per target value and
2 points per leakage. The bias term equals to 0.89 while
the variance term reaches 0.02 leading to an error rate of
0.91. In order to reduce the error rate, we can reduce the
bias term by increasing the number of instants per trace to
50, which provides a smaller bias term of 0.58 but a higher
variance term of 0.19 (with a smaller error rate of 0.77). We
can reduce the error rate by reducing the variance with a
larger profiling set of 2 000 profiling traces per target value.
This last setting provides an error rate of 0.59 (with a bias of
0.55 and a small variance of 0.03). It is worth to note that the
evaluator can reduce the bias term (as well as the error rate)
by increasing the attacking set (as shown in the Table 6).

8. http://www.dpacontest.org/v2/

http://www.dpacontest.org/v2/
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Furthermore, other techniques could be exploited to reduce
the error rate such as targeting other (or several) sensitive
values and adopting a key enumeration strategy (which was
probably applied by best attacks in the DPAContest v2).

Na Np n
Error rate composition

Bias Variance Total

TA

1 000

200

2 0.89 0.02 0.91
25 0.69 0.12 0.80
50 0.58 0.19 0.77
75 0.56 0.23 0.79

2 000

2 0.90 0.00 0.90
25 0.68 0.02 0.70
50 0.55 0.03 0.59
75 0.53 0.04 0.58

4 000

200

2 0.72 0.03 0.75
25 0.41 0.16 0.57
50 0.34 0.16 0.51
75 0.31 0.22 0.53

2 000

2 0.72 0.01 0.73
25 0.39 0.03 0.41
50 0.32 0.00 0.32
75 0.29 0.02 0.31

PCPA-TA

1 000

10

1

0.83 0.09 0.92
50 0.82 0.04 0.86
200 0.82 0.01 0.83

2 000 0.82 0.00 0.82

4 000

10

1

0.29 0.33 0.62
50 0.30 0.08 0.38
200 0.30 0.01 0.32

2 000 0.29 0.00 0.30

TABLE 6: Error rate decomposition of template attacks
(denoted TA) and profiled correlation power analysis using
template attacks (denoted PCPA-TA) targeting the Ham-
ming distance between the ciphertext and the input of the
last round of an unprotected hardware implementation of
AES. Each distinguisher uses Na attack traces, Np profiling
traces per target value, and n points per trace.

5 EXPERIMENTS ON PROTECTED DEVICE

This section extends the previous results when considering
a more challenging protected (software) implementation.
More precisely, we analyze a masking countermeasure rep-
resenting a well-known technique (due to its theoretical
soundness) in order to increase the degree of resilience of
an implementation against side-channel attacks. Our diag-
nosis tool naturally extends to protected devices because
our framework decomposes a security metric that can be
estimated on any device.

5.1 Acquisition setup

The dataset (of 80 000 power traces) measured on the pro-
tected device was collected with the same acquisition board
used for the unprotected software case studies. The profiling
source and the attack source contain respectively 56 000
and 24 000 leakages. We also applied the same filtering
technique (i.e., an average of 64 single acquisitions). The
main difference with the previous (unprotected) setting lies
in the target implementation. More precisely, this section
analyses the implementation of a first-order masked AES
SBox (with 2 shares) based on table lookups [30], [32]. This
strategy pre-computes a new masked AES SBox in memory

(denoted SBox∗) for each execution of the cryptographic
algorithm such that:

SBox∗k (x⊕min) = SBox (x)⊕mout ∀x ∈ {0, 1}8 (18)

for a given pair of input and output mask bytes (denoted
respectively min and mout) that are independent and identi-
cally distributed from a uniformly random source. Our im-
plementation avoids a first order leakage by providing the
masked input byte (i.e., p⊕k⊕min where p and k represent
the plaintext and the key) to the executed implementation.

As previously, our target device uses a random fixed 128-
bit key and random plaintexts. We target the first byte of the
key used during the first round of the masked AES.

5.2 Case studies
We vary four parameters in our experiments: (1) the number
of points per trace, (2) the number of profiling traces, (3) the
number of attack traces and (4) the type of attack. Unlike
the unprotected context, we focus here only on two popular
profiled attacks in order to highlight the usefulness of our
diagnosis tool in protected environments. More precisely,
we test template attacks and stochastic-based mixture at-
tacks of degree 1, leaving the other attacks as future work.

Due to the increase of the complexity of the case studies
(related to the implemented protection), we increase the size
of the attacking set to Na ∈ {25, 50, 100} and the size of
the profiling set to Np ∈ {20, 40, 60, 80, 100}. In our experi-
ment, we also consider two leakage dimensions (n ∈ {2, 5}
per share, leading to {4, 10} points per leakage) but only
one (linear) leakage function. Similarly to the unprotected
setting, for each case study, we estimate the parameters
of each profiled attack 100 times (with different profiling
sets sampled with replacement from the profiling source) in
order to estimate the bias, the variance and the error rate.

Section 2.2.2 reports that, in protected contexts,
stochastic-based mixture attacks are unbiased models (if the
leakages contain Gaussian noise and if the stochastic-based
models contain the right degree) since stochastic-based mix-
ture attacks (like any attack exploiting the mixture structure
of the density function) take into account the multimodal
structure of the density function associated to each value y
split in several shares. In order to estimate the complexity of
the scenarios based on the collected dataset, Table 7 reports
the (estimation) of the lower bound of the error rate of
stochastic-based mixture attacks (and of template attacks)
by considering a large profiling set (of 400 leakages per
target value). The purpose of this table is to show in the
following that, even with a high estimation error of the
decomposition of the error rate (due to a large difference
between the Bayes classifier, represented by the stochastic-
based mixture attacks, and the Oracle model), we can extract
information on the bias and on the variance.

5.3 Bias-variance decomposition of profiled attacks
Tables 8 and 9 provide the bias-variance error rate de-
composition of respectively template attacks and stochastic-
based mixture attacks (of degree 1) targeting the output
of the SBox implemented with the masking scheme. Let
assume that the adversary applies template attacks with 25
attacking traces, 20 profiling traces per target value and 2
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Na Np n Error rate

TA

25 400 2 0.90
5 0.29

50 400 2 0.69
5 0.02

100 400 2 0.28
5 0.00

SA

25 400 2 0.78
5 0.05

50 400 2 0.46
5 0.00

100 400 2 0.08
5 0.00

TABLE 7: Error rate of Template Attacks (TA) and
Stochastic-based mixture Attacks (SA) (with Np traces per
target value) targeting the output of the masked SBox as a
function of the number of points (n) per share in each trace
and the number of attack traces (Na).

points per share in the leakage. The bias reaches a high value
(0.87) compared to the variance (0.11) leading to a high
error rate (0.97). In order to reduce the bias, the adversary
can increase the number of points per share to 5, leading
to a lower bias (0.41) but a higher variance (0.52) due to
the increase of the number of parameters, which leads to
a slightly lower but still high error rate of 0.93. In order
to reduce the bias and the variance terms, the adversary
can exploit stochastic-based mixture attacks (at the cost of a
higher execution time) leading to a very low bias (0.05), a
very low variance (0.00) and a very low error rate (0.06).

Noisy contexts

In order to confirm the soundness of our approach, we
also analyze the (previously presented) masking scheme by
considering more noisy leakages in which we do not apply
the filtering method (that represents averaging of several
single acquisitions). The conclusion remains the same except
that we need more attack and profiling leakages in order to
reach similar success rates. More precisely, if an adversary
considers stochastic-based mixture attacks of degree 1 with
5 points per share in each leakage, 1 profiling leakage per
target value and 25 attack leakages, then the success rate
reaches the value 0.84 with a high bias of 0.74 and a low
variance of 0.10. Consequently, an increase of the size of
the profiling set should affect only slightly the error rate.
For example, by increasing the size of the profiling set to
20 traces per target value, we observe that stochastic-based
mixture attacks achieve an error rate of 0.75 still composed
of a high bias (0.75) and a low variance (0.00). In order to
reduce the error rate, our diagnosis tool advices to reduce
the bias term. An attacker achieves this result by increasing
the number of points per share in the leakages to 10 in
order to reach a lower error rate of 0.59 (with a lower
bias of 0.29 but a higher variance of 0.30). In this last
scenario the adversary can substantially reduce the error
rate by reducing the variance term with a larger profiling
set (composed of 20 leakages per target value), leading to a
lower error rate of 0.35 (in which the variance equals to 0.03
and the bias equals to 0.33).

Na Np n
Error rate composition

Bias Variance Total

TA

25

20 2 0.87 0.11 0.97
5 0.41 0.52 0.93

40 2 0.87 0.08 0.95
5 0.26 0.51 0.76

60 2 0.87 0.07 0.94
5 0.24 0.41 0.65

80 2 0.87 0.06 0.93
5 0.23 0.34 0.57

100 2 0.88 0.04 0.92
5 0.22 0.30 0.52

50

20 2 0.67 0.27 0.94
5 0.08 0.77 0.85

40 2 0.60 0.28 0.88
5 0.01 0.46 0.47

60 2 0.63 0.21 0.84
5 0.01 0.26 0.27

80 2 0.62 0.19 0.81
5 0.01 0.17 0.18

100 2 0.62 0.16 0.78
5 0.01 0.12 0.14

100

20 2 0.29 0.57 0.86
5 0.00 0.66 0.66

40 2 0.23 0.46 0.69
5 0.00 0.12 0.12

60 2 0.22 0.37 0.59
5 0.00 0.03 0.03

80 2 0.22 0.30 0.52
5 0.00 0.01 0.01

100 2 0.22 0.26 0.48
5 0.00 0.00 0.00

TABLE 8: Error rate decomposition of template attacks (de-
noted TA) targeting the output of the masked SBox. Each
distinguisher uses Na attack traces, Np profiling traces per
target value, and n points per share in the trace.

Na Np n
Error rate composition

Bias Variance Total

SA1

25 20 2 0.78 0.00 0.78
5 0.05 0.00 0.06

50 20 2 0.46 0.00 0.46
5 0.00 0.00 0.00

100 20 2 0.08 0.00 0.07
5 0.00 0.00 0.00

TABLE 9: Error rate decomposition of stochastic-based mix-
ture attacks of degree 1 (denoted SA1) targeting the output
of the masked SBox. Each distinguisher uses Na attack
traces, Np profiling traces per target value, and n points
per share in the trace.

6 VALIDATING ASSUMPTIONS

During an evaluation process, we assume that the evaluator
exploits the Oracle model instead of the Bayes classifier
in order to estimate the bias and the variance terms. This
substitution is necessary (1) due to a lack of information on
the Bayes classifier in practice9, and (2) in order to provide
quickly and easily the decomposition of error rates. This
section gauges the impact of this assumption on template
attacks and on stochastic attacks of degree 1 through: (1)
simulated datasets (where we have the Bayes classifier), and
(2) the comparison of the decomposition of the error rate

9. In real-world scenarios, the evaluators do not know the probability
density function of leakages, which leads to suboptimal profiled attacks
compared to physical attacks using the Bayes classifier.
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Fig. 3: Error rate, bias and variance estimated with the Bayes
classifier and with the Oracle model for Template Attacks
(TA) and Stochastic Attacks of degree 1 (SA1) using Np = 2
profiling traces per target value and Na = 15 attack traces.
The standard deviation of the noise equals to 3 for high
noise and 1 for low noise. The signal-to-noise ratio equals
to 2.01 for low noise and 0.22 for high noise. The Bayes
classifier has an error rate of 0.012 and 0.301 for respectively
low and high noise level. The leakages were generated by
the simulator presented in Section 6.1.

based on the Bayes classifier with respect to the decomposi-
tion based on the Oracle model. In all our cases, the attacker
targets the output of the AES SBox.

6.1 Unprotected contexts
In the unprotected contexts, we generated synthetic leak-
ages having 2 points (denoted 1T and 2T ) related to the
Hamming weight of the SBox:

1T = HW (SBox (p⊕ k)) + ε1, (19)

2T = HW (SBox (p⊕ k)) + ε2, (20)

where ε1 and ε2 represent the (independent) Gaussian noise
of the leakage. We estimated the parameters of each clas-
sifier 10 000 times with different profiling sets containing
Np = 2 traces per target value. Each classifier extracts the
key based on Na = 15 attack traces in the attacking set
and the attack source contains 1 000 attacking sets. Figure 3
shows the results by considering low and high noise level.

Figure 3 indicates that the higher the error rate of the
Bayes classifier10, the higher the distance between the de-
composition of the error rate based on the Bayes classifier

10. Several parameters impact the error rate of the Bayes classifier
such as the noise level, the number of informative points per leakage
and the size of the attacking set.

and the Oracle model. The rationale is that the decompo-
sition based on the Oracle model overestimates the success
rate of the Bayes classifier leading to an overestimation of
the bias term that impacts the estimation of the weight c2 of
the variance term (see Equation (13)).

6.2 Protected contexts
Protected environments represent more complicated con-
texts for the evaluation of the cryptographic devices. Fur-
thermore, the protected contexts extend the previous section
by comparing the bias-variance decomposition based on
the Oracle model with respect to the Bayes classifier when
one model contains a bias in the classifier. More precisely,
template attacks (unlike template-based mixture attacks that
take into account the mixture structure of the probability
density function) contain bias by assuming that the distribu-
tion of leakages follows a (unimodal) Gaussian distribution
while, in fact, the distribution follows a multimodal distri-
bution (as shown in the following).

Lets consider simulated leakages where one point 1T
relates to the Hamming weight of the masked SBox, and one
point 2T depends on the Hamming weight of the output
mask:

1T = HW (SBox (p⊕ k)⊕mout) + ε1, (21)

2T = HW (mout) + ε2. (22)

Based on these simulated leakages, Figure 4 shows the bias,
the variance and the error rate of template attacks and
stochastic-based mixture attacks (of degree 1) using 1 000
profiling traces per target value,Na = 100 attack traces with
low and high noise. We compute each parameter of each
profiled attack 5 000 times. The attack source contains 200
different attacking sets. The results point out two important
remarks on masked environments when considering the
Bayes classifier: (1) an increase of the noise level causes
a reduction of the bias term of template attacks, and (2)
stochastic-based mixture attacks outperform template at-
tacks thanks to a lower bias and variance terms.

The observation on the variance is expected since
stochastic-based mixture attacks have a lower number of
parameters to estimate compared to template attacks11.
Regarding the results on the bias, in a low noise level
scenario, the leakages follow a multimodal distribution
(i.e., a mixture of several Gaussian distributions) and can
be accurately modeled by stochastic-based mixture attacks
(as well as by template-based mixture attacks). In a high
noise level setting, the leakages can be represented by a
unimodal distribution (e.g., one Gaussian distribution) and
can be accurately modeled by template attacks (representing
one Gaussian distribution per target value) as well as by
stochastic-based mixture attacks. Figure 5 illustrates this
argument by plotting one leakage distribution (estimated
with the same simulator described in Equations (21) and
(22)) per target value and for two noise levels. In other
words, compared to profiling attacks which ignore the
mixture structure, attacks (whether classical template or
stochastic-based attacks) which model the mixture structure

11. Template attacks estimate one covariance matrix per target value
while stochastic-based mixture attacks compute only one covariance
matrix for all the target values.
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Fig. 4: Error rate, bias and variance estimated with the Bayes
classifier and with the Oracle model for Template Attacks
(TA) and Stochastic-based mixture Attacks of degree 1 (SA1)
using Np = 1 000 profiling traces per target value and Na =
100 attack traces. The standard deviation of the noise equals
to 3 for high noise and 0.001 for low noise. The leakages
were generated by the simulator presented in Section 6.2.

have higher abilities to fit the structure of the multimodal
leakage distributions (that leads to a higher complexity and
a smaller bias for stochastic-based mixture attacks than for
template attacks in protected contexts). However, this ability
decreases as a function of the noise level.

An important difference between theoretical results and
real case studies is the exploitation of the Oracle instead
of the Bayes. Section 6.1 reveals that the use of the Oracle
in unprotected contexts leads to an overestimation of the
bias term and an underestimation of the variance term. The
same phenomenon appears in protected contexts as plotted
in Figures 4 for template attacks and for stochastic-based
mixture attacks. The error rate of stochastic-based mixture
attacks provides an estimation of the error rate of the Bayes.
The higher this error rate, the stronger the degradation
of the estimation of the bias and the variance terms (due
to the simplification provided by the Oracle model). More
precisely, the difference between the estimated components
of the error rate based on the Oracle and based on the Bayes
is small when the Bayes has a low error rate. Moreover,
the difference between the two estimations increases as a
function of the increase of the error rate of the Bayes.

6.3 Can the diagnosis tool be useful in practice?

Section 6.1 and Section 6.2 indicate that an evaluator can
accurately estimate the bias and variance as long as the dis-
tance between the error rates of the Bayes and the Oracle is

X1

X
2
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(a) SBox (p⊕ k) = 3; σ = 0.01
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X
2

density
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Fig. 5: Leakage distribution associated to a target value
(denoted SBox (p⊕ k)) as well as to a noise level (with
a standard deviation denoted σ) when varying the mask
value (mout). In each simulated trace, the instants X1 and
X2 relate to HW (SBox (p⊕ k)⊕mout) and to HW (mout).

small. In a low noise level setting (in which the Bayes equals
to the Oracle) the bias impacts the error rate heavily which
forces the evaluator to select the best profiled attack (thanks
to an accurate estimation of the bias through the Oracle
model). However, the higher the noise level, the higher the
difference between the error rates of the Bayes classifier and
the Oracle model, and the higher the estimation errors of the
bias and the variance are. However, in protected contexts,
Section 6.2 exhibits that, in high noise level settings, all
probability-based profiled attacks have a similar bias term
computed from the Bayes classifier (i.e., the actual bias term),
which leads essentially to variance problems.

We can reduce the estimation errors of the bias and the
variance by increasing (1) the number of informative points,
(2) the number of attack traces, and (3) any parameter
providing key-related information to the Bayes classifier.
Figures 6 and 7 illustrate this phenomenon by reporting the
estimation of the bias and variance for respectively template
attacks and stochastic-based mixture attacks based on the
Oracle and based on the Bayes as a function of the number
of attack leakages. The traces represent measurements on
a masked implementation presented in Section 6.2. We use
1 000 profiling traces per target with a low and a high noise.
We compute each parameter of each attack 5 000 times. The
attack source contains 200 different sets. The figure shows
that the distance between the estimated terms based on the
Oracle and based on the Bayes increases as a function of the
noise. However, this distance decreases as a function of the
number of attack traces.
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Fig. 6: Error rate, bias and variance estimated with the Bayes
and with the Oracle for template attacks using Np = 1 000
profiling traces per target as a function of the number of at-
tack traces (Na). The standard deviation of the noise equals
to 3 for high noise and 0.001 for low noise. The leakages
were generated by the simulator presented in Section 6.2.

Concretely, all our experiments report that our diagnosis
tool can be exploited in practice when the attacking set
contains enough information on target, i.e., when the bias-
variance decomposition based on our Oracle is good enough.
Additionally, we showed that there are systematic ways
to improve the quality of this decomposition, even if the
leakage model is imperfect. In fact, the only condition we
strictly need is that the leakage model from which the
evaluator starts is sound (in the sense of the work presented
at Eurocrypt 2009 [33]), i.e., that it asymptotically leads to
successful key recoveries. There remains the problem that
evaluators cannot always know in advance how accurate
is the bias-variance decomposition. We can also observe
that even in case the bias-variance decomposition is poorly
approximated by the Oracle (as in Figure 6 and in Figure 7),
we can extract relevant intuitions about how to improve the
evaluations by comparing the decompositions of two attacks
with increasing complexities (and number of attack traces).
Note also that a large number of (security) metrics (e.g., the
error rate and the guessing entropy) lack of accuracy in high
noise contexts. So overall the presented tools can be viewed
as an ingredient in order to (more) rapidly refine the quest
for the best physical evaluation of a given implementation.

7 CONCLUSIONS

In a theoretical point of view, the diagnosis tool (based on
the Bayes classifier) specifies the source of failure of an
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Fig. 7: Error rate, bias and variance estimated with the Bayes
classifier and with the Oracle model for stochastic-based
mixture attacks of degree 1 usingNp = 1 000 profiling traces
per target value as a function of the number of attack traces
(Na). The standard deviation of the noise equals to 3 for high
noise and 0.001 for low noise. The leakages were generated
by the simulator presented in Section 6.2.

attack (e.g., a high bias or a high variance). In practice, the
evaluators lack knowledge on the Bayes classifier. The main
contribution of this paper lies on a practical instantiation
of the diagnosis tool with the Oracle (that always outputs
the right target value). As a result, on the one hand, based
on this diagnostic, the evaluators can decide what to apply
in order to increase the success of attacks. For example, an
increase of the complexity of the attack should significantly
affect the error rate if the diagnostic tool detects a high bias.
On the other hand, based on this diagnostic, the evaluators
can also decide what should not be applied. For example,
an increase of the size of the profiling set slightly affects the
error rate if the diagnostic tool detects a low variance. As a
future work, we will focus on the best choice from a set of
possibilities (that depends on the term impacting the most
the error rate) after the report of the diagnostic.

The diagnosis tool generates a set of profiling and attack-
ing sets to estimate the bias and the variance. However, the
exploitation of the diagnosis tool leads to a small overhead
compared to an approach estimating only the error rate. The
rationale is that, independently of the use of the diagnosis
tool, an evaluator requires to build several profiled attacks
(with the same complexity and evaluation settings but with
different profiling sets) using several attacking sets in order
to limit problems related to overfitting (leading to biased
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estimations of the error rate)12. In other words, the diagnosis
tool exploits all the data that was already generated anyway
(i.e., the profiling models and the attacking sets) in order to
extract more information than only the error rate.

The main limitation of the presented tool represents the
accuracy of the diagnostic. More precisely, the greater the
quantity of information in the attacking set the better the
estimation of the diagnostic. In a practical point of view,
all our experiments report that the presented tool can be
efficiently exploited to report diagnostics about attacks on
unprotected and protected implementations in hardware
and in software. The reason lies on the small difference
between the Oracle and the Bayes. Future works will focus
on the accuracy of the tool on devices executing high order
masking schemes (in which the Oracle differs significantly
from the Bayes), and on a better estimation of the error
rate of the Bayes classifier. For example, the error rate
of the Bayes classifier could be the minimum error rates
(computed with theoretical metrics such as the success
exponent [18]) found from a set of profiled attacks.

Finally, we envision to apply the tool on dimensionality
reduction algorithms in order to understand how to dis-
cover the best attack during an evaluation process.
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at the Université libre de Bruxelles (in Belgium)
in 2015. In 2010, he received with honors (grade
magna cum laude) the master degree from the
same university. During his PhD thesis, he was
a teaching assistant and a student doing re-
search as part of a Machine Learning Group
(MLG) and the Cryptography and Security Ser-
vice (QualSec). Currently, he is a post-doctoral
researcher of the QualSec. His research relates

to machine learning, side-channel attacks and countermeasures.

Nikita Veshchikov Nikita Veshchikov got his
Bachelor in Computer Sciences in 2009 at Uni-
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